scispace - formally typeset
Search or ask a question
Author

H.A. van der Vorst

Bio: H.A. van der Vorst is an academic researcher from Utrecht University. The author has contributed to research in topics: Iterative method & Krylov subspace. The author has an hindex of 25, co-authored 43 publications receiving 9156 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Numerical experiments indicate that the new variant of Bi-CG, named Bi- CGSTAB, is often much more efficient than CG-S, so that in some cases rounding errors can even result in severe cancellation effects in the solution.
Abstract: Recently the Conjugate Gradients-Squared (CG-S) method has been proposed as an attractive variant of the Bi-Conjugate Gradients (Bi-CG) method. However, it has been observed that CG-S may lead to a rather irregular convergence behaviour, so that in some cases rounding errors can even result in severe cancellation effects in the solution. In this paper, another variant of Bi-CG is proposed which does not seem to suffer from these negative effects. Numerical experiments indicate also that the new variant, named Bi-CGSTAB, is often much more efficient than CG-S.

4,722 citations

Journal ArticleDOI
TL;DR: A particular class of regular splittings of not necessarily symmetric M-matrices is proposed, if the matrix is symmetric, this splitting is combined with the conjugate-gradient method to provide a fast iterative solution algorithm.
Abstract: A particular class of regular splittings of not necessarily symmetric M-matrices is proposed. If the matrix is symmetric, this splitting is combined with the conjugate-gradient method to provide a fast iterative solution algorithm. Comparisons have been made with other well-known methods. In all test problems the new combination was faster than the other methods.

1,614 citations

Book
24 Sep 2014
TL;DR: In this article, the authors present a survey on model order reduction of coupled systems, including linear systems, eigenvalues, and projection, and propose a unified Krylov projection framework for structure-preserving model reduction via proper orthogonal decomposition.
Abstract: Basic Concepts.- to Model Order Reduction.- Linear Systems, Eigenvalues, and Projection.- Theory.- Structure-Preserving Model Order Reduction of RCL Circuit Equations.- A Unified Krylov Projection Framework for Structure-Preserving Model Reduction.- Model Reduction via Proper Orthogonal Decomposition.- PMTBR: A Family of Approximate Principal-components-like Reduction Algorithms.- A Survey on Model Reduction of Coupled Systems.- Space Mapping and Defect Correction.- Modal Approximation and Computation of Dominant Poles.- Some Preconditioning Techniques for Saddle Point Problems.- Time Variant Balancing and Nonlinear Balanced Realizations.- Singular Value Analysis and Balanced Realizations for Nonlinear Systems.- Research Aspects and Applications.- Matrix Functions.- Model Reduction of Interconnected Systems.- Quadratic Inverse Eigenvalue Problem and Its Applications to Model Updating - An Overview.- Data-Driven Model Order Reduction Using Orthonormal Vector Fitting.- Model-Order Reduction of High-Speed Interconnects Using Integrated Congruence Transform.- Model Order Reduction for MEMS: Methodology and Computational Environment for Electro-Thermal Models.- Model Order Reduction of Large RC Circuits.- Reduced Order Models of On-Chip Passive Components and Interconnects, Workbench and Test Structures.

543 citations

Journal ArticleDOI
TL;DR: In this paper, it has been shown that a very modest degree of convergence of an extreme Ritz value already suffices for an increased rate of convergence to occur, which is known as superlinear convergence.
Abstract: It has been observed that the rate of convergence of Conjugate Gradients increases when one or more of the extreme Ritz values have sufficiently converged to the corresponding eigenvalues (the “superlinear convergence” of CG). In this paper this will be proved and made quantitative. It will be shown that a very modest degree of convergence of an extreme Ritz value already suffices for an increased rate of convergence to occur.

351 citations

Journal ArticleDOI
TL;DR: In this paper, the authors suggest variants of GMRES, in which a preconditioner is constructed per it<:ration st<:p by a suitable approximation process, e.g., by GMRES itself.
Abstract: Recently Eirola and Nevanlinna have proposed an iterativ<: solution method for unsymmetric linear systems, in which the preconditioner is updated from step to step. Following their ideas we suggest variants of GMRES, in which a preconditioner is constructed per it<:ration st<:p by a suitable approximation process, e.g., by GMRES itself. Our numerical experimenb indicate that this may lead to considerable savings in CPU-timc and memory requirements in typical CFD applications.

307 citations


Cited by
More filters
Book
01 Apr 2003
TL;DR: This chapter discusses methods related to the normal equations of linear algebra, and some of the techniques used in this chapter were derived from previous chapters of this book.
Abstract: Preface 1. Background in linear algebra 2. Discretization of partial differential equations 3. Sparse matrices 4. Basic iterative methods 5. Projection methods 6. Krylov subspace methods Part I 7. Krylov subspace methods Part II 8. Methods related to the normal equations 9. Preconditioned iterations 10. Preconditioning techniques 11. Parallel implementations 12. Parallel preconditioners 13. Multigrid methods 14. Domain decomposition methods Bibliography Index.

13,484 citations

Journal ArticleDOI
TL;DR: The implementation of various types of turbulence modeling in a FOAM computational-fluid-dynamics code is discussed, and calculations performed on a standard test case, that of flow around a square prism, are presented.
Abstract: In this article the principles of the field operation and manipulation (FOAM) C++ class library for continuum mechanics are outlined. Our intention is to make it as easy as possible to develop reliable and efficient computational continuum-mechanics codes: this is achieved by making the top-level syntax of the code as close as possible to conventional mathematical notation for tensors and partial differential equations. Object-orientation techniques enable the creation of data types that closely mimic those of continuum mechanics, and the operator overloading possible in C++ allows normal mathematical symbols to be used for the basic operations. As an example, the implementation of various types of turbulence modeling in a FOAM computational-fluid-dynamics code is discussed, and calculations performed on a standard test case, that of flow around a square prism, are presented. To demonstrate the flexibility of the FOAM library, codes for solving structures and magnetohydrodynamics are also presented with appropriate test case results given. © 1998 American Institute of Physics.

3,987 citations

Journal ArticleDOI
TL;DR: In this article, a third-generation numerical wave model to compute random, short-crested waves in coastal regions with shallow water and ambient currents (Simulating Waves Nearshore (SWAN)) has been developed, implemented, and validated.
Abstract: A third-generation numerical wave model to compute random, short-crested waves in coastal regions with shallow water and ambient currents (Simulating Waves Nearshore (SWAN)) has been developed, implemented, and validated. The model is based on a Eulerian formulation of the discrete spectral balance of action density that accounts for refractive propagation over arbitrary bathymetry and current fields. It is driven by boundary conditions and local winds. As in other third-generation wave models, the processes of wind generation, whitecapping, quadruplet wave-wave interactions, and bottom dissipation are represented explicitly. In SWAN, triad wave-wave interactions and depth-induced wave breaking are added. In contrast to other third-generation wave models, the numerical propagation scheme is implicit, which implies that the computations are more economic in shallow water. The model results agree well with analytical solutions, laboratory observations, and (generalized) field observations.

3,625 citations

Journal ArticleDOI
TL;DR: The main purpose of this paper is to advocate the use of the graph associated with Tikhonov regularization in the numerical treatment of discrete ill-posed problems, and to demonstrate several important relations between regularized solutions and the graph.
Abstract: When discrete ill-posed problems are analyzed and solved by various numerical regularization techniques, a very convenient way to display information about the regularized solution is to plot the norm or seminorm of the solution versus the norm of the residual vector. In particular, the graph associated with Tikhonov regularization plays a central role. The main purpose of this paper is to advocate the use of this graph in the numerical treatment of discrete ill-posed problems. The graph is characterized quantitatively, and several important relations between regularized solutions and the graph are derived. It is also demonstrated that several methods for choosing the regularization parameter are related to locating a characteristic L-shaped “corner” of the graph.

3,585 citations

Journal ArticleDOI
TL;DR: The University of Florida Sparse Matrix Collection, a large and actively growing set of sparse matrices that arise in real applications, is described and a new multilevel coarsening scheme is proposed to facilitate this task.
Abstract: We describe the University of Florida Sparse Matrix Collection, a large and actively growing set of sparse matrices that arise in real applications The Collection is widely used by the numerical linear algebra community for the development and performance evaluation of sparse matrix algorithms It allows for robust and repeatable experiments: robust because performance results with artificially generated matrices can be misleading, and repeatable because matrices are curated and made publicly available in many formats Its matrices cover a wide spectrum of domains, include those arising from problems with underlying 2D or 3D geometry (as structural engineering, computational fluid dynamics, model reduction, electromagnetics, semiconductor devices, thermodynamics, materials, acoustics, computer graphics/vision, robotics/kinematics, and other discretizations) and those that typically do not have such geometry (optimization, circuit simulation, economic and financial modeling, theoretical and quantum chemistry, chemical process simulation, mathematics and statistics, power networks, and other networks and graphs) We provide software for accessing and managing the Collection, from MATLAB™, Mathematica™, Fortran, and C, as well as an online search capability Graph visualization of the matrices is provided, and a new multilevel coarsening scheme is proposed to facilitate this task

3,456 citations