scispace - formally typeset
Search or ask a question
Author

H. Ali Borhan

Bio: H. Ali Borhan is an academic researcher from Clemson University. The author has contributed to research in topics: Model predictive control & Electric vehicle. The author has an hindex of 3, co-authored 3 publications receiving 1955 citations.

Papers
More filters
Proceedings ArticleDOI
10 Jun 2009
TL;DR: Simulation results over multiple driving cycles indicate better fuel economy over conventional strategies can be achieved and the proposed algorithm is causal and has the potential for real-time implementation.
Abstract: In this paper, a Model Predictive Control (MPC) strategy is developed for the first time to solve the optimal energy management problem of power-split hybrid electric vehicles. A power-split hybrid combines the advantages of series and parallel hybrids by utilizing two electric machines and a combustion engine. Because of its many modes of operation, modeling a power-split configuration is complex and devising a near-optimal power management strategy is quite challenging. To systematically improve the fuel economy of a power-split hybrid, we formulate the power management problem as a nonlinear optimization problem. The nonlinear powertrain model and the constraints are linearized at each sample time and a receding horizon linear MPC strategy is employed to determine the power split ratio based on the updated model. Simulation results over multiple driving cycles indicate better fuel economy over conventional strategies can be achieved. In addition the proposed algorithm is causal and has the potential for real-time implementation.

1,049 citations

Proceedings ArticleDOI
23 Nov 2009

872 citations

Proceedings ArticleDOI
01 Dec 2010
TL;DR: A causal optimal controller based on Nonlinear Model Predictive Control (NMPC) is developed for a power-split Hybrid Electric Vehicle (HEV) and the fuel economies are improved noticeably with respect to those of an available controller in the commercial Powertrain System Analysis Toolkit software and a linear time-varying MPC controller previously developed by the authors.
Abstract: In this paper, a causal optimal controller based on Nonlinear Model Predictive Control (NMPC) is developed for a power-split Hybrid Electric Vehicle (HEV). The global fuel minimization problem is converted to a finite horizon optimal control problem with an approximated cost-to-go, using the relationship between the Hamilton-Jacobi-Bellman (HJB) equation and the Pontryagin's minimum principle. A nonlinear MPC framework is employed to solve the problem online. Different methods for tuning the approximated minimum cost-to-go as a design parameter of the MPC are discussed. Simulation results on a validated high-fidelity closed-loop model of a power-split HEV over multiple driving cycles show that with the proposed strategy, the fuel economies are improved noticeably with respect to those of an available controller in the commercial Powertrain System Analysis Toolkit (PSAT) software and a linear time-varying MPC controller previously developed by the authors.

57 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This survey tries to provide a structured and comprehensive overview of the research on anomaly detection by grouping existing techniques into different categories based on the underlying approach adopted by each technique.
Abstract: Anomaly detection is an important problem that has been researched within diverse research areas and application domains. Many anomaly detection techniques have been specifically developed for certain application domains, while others are more generic. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection. We have grouped existing techniques into different categories based on the underlying approach adopted by each technique. For each category we have identified key assumptions, which are used by the techniques to differentiate between normal and anomalous behavior. When applying a given technique to a particular domain, these assumptions can be used as guidelines to assess the effectiveness of the technique in that domain. For each category, we provide a basic anomaly detection technique, and then show how the different existing techniques in that category are variants of the basic technique. This template provides an easier and more succinct understanding of the techniques belonging to each category. Further, for each category, we identify the advantages and disadvantages of the techniques in that category. We also provide a discussion on the computational complexity of the techniques since it is an important issue in real application domains. We hope that this survey will provide a better understanding of the different directions in which research has been done on this topic, and how techniques developed in one area can be applied in domains for which they were not intended to begin with.

9,627 citations

Journal ArticleDOI
TL;DR: Characteristics of the process industry data which are critical for the development of data-driven Soft Sensors are discussed.

1,399 citations

Journal ArticleDOI
TL;DR: A distributed sliding-mode estimator and a non-singular sliding surface were given to guarantee that the attitudes and angular velocities of the followers converge, respectively, to the dynamic convex hull formed by those of the leaders in finite time.

799 citations

Journal ArticleDOI
TL;DR: This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments and presents a state estimator formulation that permits highly precise execution of extended walking plans over non-flat terrain.
Abstract: This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments. To make challenging locomotion tasks tractable, we describe several novel applications of convex, mixed-integer, and sparse nonlinear optimization to problems ranging from footstep placement to whole-body planning and control. We also present a state estimator formulation that, when combined with our walking controller, permits highly precise execution of extended walking plans over non-flat terrain. We describe our complete system integration and experiments carried out on Atlas, a full-size hydraulic humanoid robot built by Boston Dynamics, Inc.

715 citations

Journal ArticleDOI
TL;DR: A novel super-twisting adaptive sliding mode control law is proposed for the control of an electropneumatic actuator using dynamically adapted control gains that ensure the establishment, in a finite time, of a real second order sliding mode.

648 citations