scispace - formally typeset
Search or ask a question
Author

H. Blümer

Bio: H. Blümer is an academic researcher from Karlsruhe Institute of Technology. The author has contributed to research in topics: Cosmic ray & Pierre Auger Observatory. The author has an hindex of 35, co-authored 88 publications receiving 5883 citations.


Papers
More filters
Journal ArticleDOI
J. Abraham1, P. Abreu2, Marco Aglietta3, C. Aguirre  +449 moreInstitutions (69)
09 Nov 2007-Science
TL;DR: In this article, the authors demonstrate that there is a correlation between the arrival directions of cosmic rays with energy above 6 x 10{sup 19} eV and the positions of active galactic nuclei lying within 75 Mpc.
Abstract: Using data collected at the Pierre Auger Observatory during the past 3.7 years, we demonstrate that there is a correlation between the arrival directions of cosmic rays with energy above {approx} 6 x 10{sup 19} eV and the positions of active galactic nuclei (AGN) lying within {approx} 75 Mpc. We reject the hypothesis of an isotropic distribution of these cosmic rays at over 99% confidence level from a prescribed a priori test. The correlation we observe is compatible with the hypothesis that the highest energy particles originate from nearby extragalactic sources whose flux has not been significantly reduced by interaction with the cosmic background radiation. AGN or objects having a similar spatial distribution are possible sources.

798 citations

Journal ArticleDOI
J. Abraham1, P. Abreu2, Marco Aglietta3, Eun-Joo Ahn4  +489 moreInstitutions (65)
TL;DR: In this article, the authors reported a measurement of the flux of cosmic rays with unprecedented precision and statistics using the Pierre Auger Observatory based on fluorescence observations in coincidence with at least one surface detector.

461 citations

Journal ArticleDOI
A. Aab1, P. Abreu2, P. Abreu3, Marco Aglietta4  +511 moreInstitutions (70)
TL;DR: In this article, a study of the distributions of the depth of maximum, X-max, of extensive air-shower profiles with energies above 10(17.8) eV was performed with the fluorescence telescopes of the Pierre Auger Observatory.
Abstract: We report a study of the distributions of the depth of maximum, X-max, of extensive air-shower profiles with energies above 10(17.8) eV as observed with the fluorescence telescopes of the Pierre Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is described in detail as well as the experimental cross-checks and systematic uncertainties. Furthermore, we discuss the detector acceptance and the resolution of the X-max measurement and provide parametrizations thereof as a function of energy. The energy dependence of the mean and standard deviation of the X-max distributions are compared to air-shower simulations for different nuclear primaries and interpreted in terms of the mean and variance of the logarithmic mass distribution at the top of the atmosphere.

408 citations

Journal ArticleDOI
P. Abreu1, Marco Aglietta2, Eun-Joo Ahn3, D. Allard  +492 moreInstitutions (68)
TL;DR: In this paper, anisotropy was measured by the fraction of arrival directions that are less than 3.1 degrees from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog).

404 citations

Journal ArticleDOI
TL;DR: The KASCADE experiment as mentioned in this paper was designed to measure air showers of primary cosmic-ray energies in the PeV region and to investigate the knee phenomenon in the all-particle energy spectrum.
Abstract: KASCADE has been designed to measure air showers of primary cosmic-ray energies in the PeV region and to investigate the knee phenomenon in the all-particle energy spectrum. Several observations are measured simultaneously for each event by different detector systems. The experiment started to take data in 1996 and has been completed and extended since then. The individual detector systems and their performances are described. Also, the experience in long-term operation of the experiment and the interplay between different components is outlined.

333 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: A binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors.
Abstract: On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of $\sim 1.7\,{\rm{s}}$ with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of ${40}_{-8}^{+8}$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 $\,{M}_{\odot }$. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $\sim 40\,{\rm{Mpc}}$) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position $\sim 9$ and $\sim 16$ days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.

2,746 citations

01 Jun 2013
TL;DR: In this article, the Pierre Auger Collaboration has reported evidence for anisotropies in the arrival directions of cosmic rays with energies larger thanEth = 55 EeV and showed that there is a correlation above the isotropic expectation with nearby active galaxies and the largest excess is in a celestial region around the position of the radio galaxy Cen A.
Abstract: The Pierre Auger Collaboration has reported evidence for anisotropies in the arrival directions of cosmic rays with energies larger thanEth = 55 EeV. There is a correlation above the isotropic expectation with nearby active galaxies and the largest excess is in a celestial region around the position of the radio galaxy Cen A. If these anisotropies are due to nuclei of charge Z, the protons accelerated in those sources are expected, under reasonable assumptions, to lead to excesses in the same regions of the sky at energies above Eth/Z. We here report the lack of anisotropies at these lower energies for illustrative values of Z = 6, 13 and 26. These observations set stringent constraints on the allowed proton fraction at the sources.

868 citations

Journal Article
TL;DR: In particular, the role of mesons, isobars and quarks in nuclear structure and the use of complex nuclei for probing fundamental symmetries is discussed in this paper.

665 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the possible mechanisms for the generation of cosmological magnetic fields, discuss their evolution in an expanding universe filled with the cosmic plasma and provide a critical review of the literature on the subject.
Abstract: We review the possible mechanisms for the generation of cosmological magnetic fields, discuss their evolution in an expanding Universe filled with the cosmic plasma and provide a critical review of the literature on the subject. We put special emphasis on the prospects for observational tests of the proposed cosmological magnetogenesis scenarios using radio and gamma-ray astronomy and ultra-high-energy cosmic rays. We argue that primordial magnetic fields are observationally testable. They lead to magnetic fields in the intergalactic medium with magnetic field strength and correlation length in a well defined range. We also state the unsolved questions in this fascinating open problem of cosmology and propose future observations to address them.

662 citations