scispace - formally typeset
Search or ask a question
Author

H. Bouallagui

Other affiliations: École Normale Supérieure
Bio: H. Bouallagui is an academic researcher from Institut national des sciences appliquées. The author has contributed to research in topics: Bioreactor & Anaerobic filter. The author has an hindex of 2, co-authored 2 publications receiving 680 citations. Previous affiliations of H. Bouallagui include École Normale Supérieure.

Papers
More filters
Journal ArticleDOI
TL;DR: Continuous two-phase systems appear as more highly efficient technologies for anaerobic digestion of FVW, their greatest advantage lies in the buffering of the organic loading rate taking place in the first stage, allowing a more constant feeding rate of the methanogenic second stage.

558 citations

Journal ArticleDOI
TL;DR: In this article, the potential of anaerobic digestion for material recovery and energy production from fruit and vegetable wastes (FVW) was studied under different operating conditions using different types of bioreactors.
Abstract: This work reviews the potential of anaerobic digestion for material recovery and energy production from fruit and vegetable wastes (FVW). These wastes contain 8–18% total solids (TS), with a total volatile solids (VS) content of 86–92%. The organic fraction includes about 75% easy biodegradable matter (sugars and hemicellulose), 9% cellulose and 5% lignin. Anaerobic digestion of FVW was studied under different operating conditions using different types of bioreactors. It permits the conversion of 70–95% of organic matter to methane, with a volumetric organic loading rate (OLR) o f 1–6.8 g versatile solids (VS)/l day. A major limitation of anaerobic digestion of FVW is a rapid acidification of these wastes decreasing the pH in the reactor, and a larger volatile fatty acids production (VFA), which stress and inhibit the activity of methanogenic bacteria. Continuous two-phase systems appear as more highly efficient technologies for anaerobic digestion of FVW. Their greatest advantage lies in the buffering of the organic loading rate taking place in the first stage, allowing a more constant feeding rate of the methanogenic second stage. Using a two-stage system involving a thermophilic liquefaction reactor and a mesophilic anaerobic filter, over 95% volatile solids were converted to methane at a volumetric loading rate of 5.65 g VS/l d. The average methane production yield was about 420 l/kg added VS.

201 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Current optimisation techniques associated with anaerobic digestion are reviewed and possible areas where improvements could be made are suggested, including the basic design considerations of a single or multi-stage reactor configuration, the type, power and duration of the mixing regime and the retention of active microbial biomass within the reactor.

1,383 citations

Journal ArticleDOI
TL;DR: This manuscript provides a broad overview of the digestibility and energy production (biogas) yield of a range of substrates and the digester configurations that achieve these yields.

856 citations

Journal ArticleDOI
TL;DR: In this paper, a review of pretreatment techniques to enhance the anaerobic digestion of organic solid waste, including mechanical, thermal, chemical and biological methods, is presented, in terms of their efficiency, energy balance, environmental sustainability as well as capital, operational and maintenance costs.

707 citations

Journal ArticleDOI
Kiros Hagos1, Jianpeng Zong1, Dongxue Li1, Chang Liu1, Xiaohua Lu1 
TL;DR: In this paper, the authors reviewed the research progress and challenges of AcoD technology, and the contribution of different techniques in biogas production engineering, and revealed that the addition of different environmentally friendly nanoparticles can improve the stability and performance of the ACOD system.
Abstract: Globally, there is increasing awareness that renewable energy and energy efficiency are vital for both creating new economic opportunities and controlling the environmental pollution. AD technology is the biochemical process of biogas production which can change the complex organic materials into a clean and renewable source of energy. AcoD process is a reliable alternative option to resolve the disadvantages of single substrate digestion system related to substrate characteristics and system optimization. This paper reviewed the research progress and challenges of AcoD technology, and the contribution of different techniques in biogas production engineering. As the applicability and demand of the AcoD technology increases, the complexity of the system becomes increased, and the characterization of organic materials becomes volatile which requires advanced methods for investigation. Numerous publications have been noted that ADM1 model and its modified version becomes the most powerful tool to optimize the AcoD process of biogas production, and indicating that the disintegration and hydrolysis steps are the limiting factors of co-digestion process. Biochemical methane potential (BMP) test is promising method to determine the biodegradability and decomposition rate of organic materials. The addition of different environmentally friendly nanoparticles can improve the stability and performance of the AcoD system. The process optimization and improvement of biogas production still seek further investigations. Furthermore, using advanced simulation approaches and characterization methods of organic wastes can accelerate the transformation to industrializations, and realize the significant improvement of biogas production as a renewable source and economically feasible energy in developing countries, like China. Finally, the review reveals, designing and developing a framework, including various aspects to improve the biogas production is essential.

573 citations

Journal ArticleDOI
TL;DR: The present review synthesizes the current knowledge available in the use of technologies for food-waste-to-energy conversion involving biological, thermal and thermochemical technologies and proposes future directions for more effective utilization of food waste for renewable energy generation from an interdisciplinary perspective.

485 citations