scispace - formally typeset
Search or ask a question
Author

H. Bryan Brewer

Bio: H. Bryan Brewer is an academic researcher from MedStar Washington Hospital Center. The author has contributed to research in topics: Cholesterol & Apolipoprotein B. The author has an hindex of 75, co-authored 215 publications receiving 60497 citations. Previous affiliations of H. Bryan Brewer include American College of Cardiology & MedStar Health.


Papers
More filters
Journal ArticleDOI
16 Jun 1993-JAMA
TL;DR: Dairy therapy remains the first line of treatment of high blood cholesterol, and drug therapy is reserved for patients who are considered to be at high risk for CHD, and the fundamental approach to treatment is comparable.
Abstract: THE SECOND report of the Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel II, or ATP II) presents the National Cholesterol Education Program's updated recommendations for cholesterol management. It is similar to the first in general outline, and the fundamental approach to treatment of high blood cholesterol is comparable. This report continues to identify low-density lipoproteins (LDL) as the primary target of cholesterol-lowering therapy. As in the first report, the second report emphasizes the role of the clinical approach in primary prevention of coronary heart disease (CHD). Dietary therapy remains the first line of treatment of high blood cholesterol, and drug therapy is reserved for patients who are considered to be at high risk for CHD. However, the second report contains new features that distinguish it from the first. These include the following: Increased emphasis on See also pp 3002 and 3009.

28,495 citations

Journal ArticleDOI
TL;DR: The trials confirm the benefit of cholesterol-lowering therapy in high-risk patients and support the ATP III treatment goal of low-density lipoprotein cholesterol (LDL-C) <100 mg/dL, and confirm that older persons benefit from therapeutic lowering of LDL-C.
Abstract: The Adult Treatment Panel III (ATP III) of the National Cholesterol Education Program issued an evidence-based set of guidelines on cholesterol management in 2001. Since the publication of ATP III, 5 major clinical trials of statin therapy with clinical end points have been published. These trials addressed issues that were not examined in previous clinical trials of cholesterol-lowering therapy. The present document reviews the results of these recent trials and assesses their implications for cholesterol management. Therapeutic lifestyle changes (TLC) remain an essential modality in clinical management. The trials confirm the benefit of cholesterol-lowering therapy in high-risk patients and support the ATP III treatment goal of low-density lipoprotein cholesterol (LDL-C) <100 mg/dL. They support the inclusion of patients with diabetes in the high-risk category and confirm the benefits of LDL-lowering therapy in these patients. They further confirm that older persons benefit from therapeutic lowering of LDL-C. The major recommendations for modifications to footnote the ATP III treatment algorithm are the following. In high-risk persons, the recommended LDL-C goal is <100 mg/dL, but when risk is very high, an LDL-C goal of <70 mg/dL is a therapeutic option, ie, a reasonable clinical strategy, on the basis of available clinical trial evidence. This therapeutic option extends also to patients at very high risk who have a baseline LDL-C <100 mg/dL. Moreover, when a high-risk patient has high triglycerides or low high-density lipoprotein cholesterol (HDL-C), consideration can be given to combining a fibrate or nicotinic acid with an LDL-lowering drug. For moderately high-risk persons (2+ risk factors and 10-year risk 10% to 20%), the recommended LDL-C goal is <130 mg/dL, but an LDL-C goal <100 mg/dL is a therapeutic option on the basis of recent trial evidence. The latter option extends also to moderately high-risk persons with a baseline LDL-C of 100 to 129 mg/dL. When LDL-lowering drug therapy is employed in high-risk or moderately high-risk persons, it is advised that intensity of therapy be sufficient to achieve at least a 30% to 40% reduction in LDL-C levels. Moreover, any person at high risk or moderately high risk who has lifestyle-related risk factors (eg, obesity, physical inactivity, elevated triglycerides, low HDL-C, or metabolic syndrome) is a candidate for TLC to modify these risk factors regardless of LDL-C level. Finally, for people in lower-risk categories, recent clinical trials do not modify the goals and cutpoints of therapy.

6,944 citations

Journal ArticleDOI
TL;DR: Although ATP III identified CVD as the primary clinical outcome of the metabolic syndrome, most people with this syndrome have insulin resistance, which confers increased risk for type 2 diabetes, when diabetes becomes clinically apparent, CVD risk rises sharply.
Abstract: The National Cholesterol Education Program’s Adult Treatment Panel III report (ATP III)1 identified the metabolic syndrome as a multiplex risk factor for cardiovascular disease (CVD) that is deserving of more clinical attention. The cardiovascular community has responded with heightened awareness and interest. ATP III criteria for metabolic syndrome differ somewhat from those of other organizations. Consequently, the National Heart, Lung, and Blood Institute, in collaboration with the American Heart Association, convened a conference to examine scientific issues related to definition of the metabolic syndrome. The scientific evidence related to definition was reviewed and considered from several perspectives: (1) major clinical outcomes, (2) metabolic components, (3) pathogenesis, (4) clinical criteria for diagnosis, (5) risk for clinical outcomes, and (6) therapeutic interventions. ATP III viewed CVD as the primary clinical outcome of metabolic syndrome. Most individuals who develop CVD have multiple risk factors. In 1988, Reaven2 noted that several risk factors (eg, dyslipidemia, hypertension, hyperglycemia) commonly cluster together. This clustering he called Syndrome X , and he recognized it as a multiplex risk factor for CVD. Reaven and subsequently others postulated that insulin resistance underlies Syndrome X (hence the commonly used term insulin resistance syndrome ). Other researchers use the term metabolic syndrome for this clustering of metabolic risk factors. ATP III used this alternative term. It avoids the implication that insulin resistance is the primary or only cause of associated risk factors. Although ATP III identified CVD as the primary clinical outcome of the metabolic syndrome, most people with this syndrome have insulin resistance, which confers increased risk for type 2 diabetes. When diabetes becomes clinically apparent, CVD risk rises sharply. Beyond CVD and type 2 diabetes, individuals with metabolic syndrome seemingly are susceptible to other conditions, notably polycystic ovary syndrome, fatty liver, cholesterol gallstones, asthma, sleep disturbances, and some …

6,238 citations

Journal ArticleDOI
TL;DR: New guidelines for the treatment of high blood cholesterol in adults 20 years of age and over are provided and which patients should go on to have lipoprotein analysis, and which should receive cholesterol-lowering treatment on the basis of their low density lipop protein levels and status with respect to other coronary heart disease risk factors are detailed.
Abstract: • This report of an expert panel of the National Cholesterol Education Program provides new guidelines for the treatment of high blood cholesterol in adults 20 years of age and over. Total cholesterol levels are classified as follows: ( Arch Intern Med 1988;148:36-69)

2,055 citations

Journal ArticleDOI
TL;DR: Small-molecule inhibitors of CETP have now been tested in human subjects and shown to increase the concentration of HDL cholesterol while decreasing that of LDL cholesterol and apoB, and test the hypothesis in randomized trials of humans that pharmacological inhibition of CETp retards the development of atherosclerosis.
Abstract: Cholesteryl ester transfer protein (CETP) promotes the transfer of cholesteryl esters from antiatherogenic HDLs to proatherogenic apolipoprotein B (apoB)-containing lipoproteins, including VLDLs, VLDL remnants, IDLs, and LDLs. A deficiency of CETP is associated with increased HDL levels and decreased LDL levels, a profile that is typically antiatherogenic. Studies in rabbits, a species with naturally high levels of CETP, support the therapeutic potential of CETP inhibition as an approach to retarding atherogenesis. Studies in mice, a species that lacks CETP activity, have provided mixed results. Human subjects with heterozygous CETP deficiency and an HDL cholesterol level >60 mg/dL have a reduced risk of coronary heart disease. Evidence that atherosclerosis may be increased in CETP-deficient subjects whose HDL levels are not increased is difficult to interpret and may reflect confounding or bias. Small-molecule inhibitors of CETP have now been tested in human subjects and shown to increase the concentration of HDL cholesterol while decreasing that of LDL cholesterol and apoB. Thus, it seems important and timely to test the hypothesis in randomized trials of humans that pharmacological inhibition of CETP retards the development of atherosclerosis.

827 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In those older than age 50, systolic blood pressure of greater than 140 mm Hg is a more important cardiovascular disease (CVD) risk factor than diastolic BP, and hypertension will be controlled only if patients are motivated to stay on their treatment plan.
Abstract: The National High Blood Pressure Education Program presents the complete Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Like its predecessors, the purpose is to provide an evidence-based approach to the prevention and management of hypertension. The key messages of this report are these: in those older than age 50, systolic blood pressure (BP) of greater than 140 mm Hg is a more important cardiovascular disease (CVD) risk factor than diastolic BP; beginning at 115/75 mm Hg, CVD risk doubles for each increment of 20/10 mm Hg; those who are normotensive at 55 years of age will have a 90% lifetime risk of developing hypertension; prehypertensive individuals (systolic BP 120-139 mm Hg or diastolic BP 80-89 mm Hg) require health-promoting lifestyle modifications to prevent the progressive rise in blood pressure and CVD; for uncomplicated hypertension, thiazide diuretic should be used in drug treatment for most, either alone or combined with drugs from other classes; this report delineates specific high-risk conditions that are compelling indications for the use of other antihypertensive drug classes (angiotensin-converting enzyme inhibitors, angiotensin-receptor blockers, beta-blockers, calcium channel blockers); two or more antihypertensive medications will be required to achieve goal BP (<140/90 mm Hg, or <130/80 mm Hg) for patients with diabetes and chronic kidney disease; for patients whose BP is more than 20 mm Hg above the systolic BP goal or more than 10 mm Hg above the diastolic BP goal, initiation of therapy using two agents, one of which usually will be a thiazide diuretic, should be considered; regardless of therapy or care, hypertension will be controlled only if patients are motivated to stay on their treatment plan. Positive experiences, trust in the clinician, and empathy improve patient motivation and satisfaction. This report serves as a guide, and the committee continues to recognize that the responsible physician's judgment remains paramount.

14,975 citations

Journal ArticleDOI
TL;DR: It was agreed that there should not be an obligatory component, but that waist measurement would continue to be a useful preliminary screening tool, and a single set of cut points would be used for all components except waist circumference, for which further work is required.
Abstract: A cluster of risk factors for cardiovascular disease and type 2 diabetes mellitus, which occur together more often than by chance alone, have become known as the metabolic syndrome. The risk factors include raised blood pressure, dyslipidemia (raised triglycerides and lowered high-density lipoprotein cholesterol), raised fasting glucose, and central obesity. Various diagnostic criteria have been proposed by different organizations over the past decade. Most recently, these have come from the International Diabetes Federation and the American Heart Association/National Heart, Lung, and Blood Institute. The main difference concerns the measure for central obesity, with this being an obligatory component in the International Diabetes Federation definition, lower than in the American Heart Association/National Heart, Lung, and Blood Institute criteria, and ethnic specific. The present article represents the outcome of a meeting between several major organizations in an attempt to unify criteria. It was agreed that there should not be an obligatory component, but that waist measurement would continue to be a useful preliminary screening tool. Three abnormal findings out of 5 would qualify a person for the metabolic syndrome. A single set of cut points would be used for all components except waist circumference, for which further work is required. In the interim, national or regional cut points for waist circumference can be used.

11,737 citations

Journal ArticleDOI
TL;DR: This statement from the American Heart Association and the National Heart, Lung, and Blood Institute is intended to provide up-to-date guidance for professionals on the diagnosis and management of the metabolic syndrome in adults.
Abstract: The metabolic syndrome has received increased attention in the past few years. This statement from the American Heart Association (AHA) and the National Heart, Lung, and Blood Institute (NHLBI) is intended to provide up-to-date guidance for professionals on the diagnosis and management of the metabolic syndrome in adults. The metabolic syndrome is a constellation of interrelated risk factors of metabolic origin— metabolic risk factors —that appear to directly promote the development of atherosclerotic cardiovascular disease (ASCVD).1 Patients with the metabolic syndrome also are at increased risk for developing type 2 diabetes mellitus. Another set of conditions, the underlying risk factors , give rise to the metabolic risk factors. In the past few years, several expert groups have attempted to set forth simple diagnostic criteria to be used in clinical practice to identify patients who manifest the multiple components of the metabolic syndrome. These criteria have varied somewhat in specific elements, but in general they include a combination of both underlying and metabolic risk factors. The most widely recognized of the metabolic risk factors are atherogenic dyslipidemia, elevated blood pressure, and elevated plasma glucose. Individuals with these characteristics commonly manifest a prothrombotic state and a pro-inflammatory state as well. Atherogenic dyslipidemia consists of an aggregation of lipoprotein abnormalities including elevated serum triglyceride and apolipoprotein B (apoB), increased small LDL particles, and a reduced level of HDL cholesterol (HDL-C). The metabolic syndrome is often referred to as if it were a discrete entity with a single cause. Available data suggest that it truly is a syndrome, ie, a grouping of ASCVD risk factors, but one that probably has more than one cause. Regardless of cause, the syndrome identifies individuals at an elevated risk for ASCVD. The magnitude of the increased risk can vary according to which components of the syndrome are …

9,982 citations

01 Jan 2014
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care.
Abstract: XI. STRATEGIES FOR IMPROVING DIABETES CARE D iabetes is a chronic illness that requires continuing medical care and patient self-management education to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. These standards are not intended to preclude more extensive evaluation and management of the patient by other specialists as needed. For more detailed information, refer to Bode (Ed.): Medical Management of Type 1 Diabetes (1), Burant (Ed): Medical Management of Type 2 Diabetes (2), and Klingensmith (Ed): Intensive Diabetes Management (3). The recommendations included are diagnostic and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A grading system (Table 1), developed by the American Diabetes Association (ADA) and modeled after existing methods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E.

9,618 citations