scispace - formally typeset
Search or ask a question
Author

H. Bunz

Bio: H. Bunz is an academic researcher from University of Stuttgart. The author has contributed to research in topics: Synergetics (Haken) & Body movement. The author has an hindex of 1, co-authored 1 publications receiving 2051 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A theoretical model, using concepts central to the interdisciplinary field of synergetics and nonlinear oscillator theory, is developed, which reproduces the dramatic change in coordinative pattern observed between the hands.
Abstract: Earlier experimental studies by one of us (Kelso, 1981a, 1984) have shown that abrupt phase transitions occur in human hand movements under the influence of scalar changes in cycling frequency. Beyond a critical frequency the originally prepared out-of-phase, antisymmetric mode is replaced by a symmetrical, in-phase mode involving simultaneous activation of homologous muscle groups. Qualitavely, these phase transitions are analogous to gait shifts in animal locomotion as well as phenomena common to other physical and biological systems in which new “modes” or spatiotemporal patterns arise when the system is parametrically scaled beyond its equilibrium state (Haken, 1983). In this paper a theoretical model, using concepts central to the interdisciplinary field of synergetics and nonlinear oscillator theory, is developed, which reproduces (among other features) the dramatic change in coordinative pattern observed between the hands.

2,144 citations


Cited by
More filters
Book
01 Dec 1996
TL;DR: Clark as mentioned in this paper argues that the mental has been treated as a realm that is distinct from the body and the world, and argues that a key to understanding brains is to see them as controllers of embodied activity.
Abstract: From the Publisher: The old opposition of matter versus mind stubbornly persists in the way we study mind and brain. In treating cognition as problem solving, Andy Clark suggests, we may often abstract too far from the very body and world in which our brains evolved to guide us. Whereas the mental has been treated as a realm that is distinct from the body and the world, Clark forcefully attests that a key to understanding brains is to see them as controllers of embodied activity. From this paradigm shift he advances the construction of a cognitive science of the embodied mind.

3,745 citations

Journal ArticleDOI
TL;DR: This review summarizes theories and empirical findings obtained with the tapping task on the role of intention, rate limits, the negative mean asynchrony, variability, models of error correction, perturbation studies, neural correlates of SMS, and SMS in musical contexts.
Abstract: Sensorimotor synchronization (SMS), the rhythmic coordination of perception and action, occurs in many contexts, but most conspicuously in music performance and dance. In the laboratory, it is most often studied in the form of finger tapping to a sequence of auditory stimuli. This review summarizes theories and empirical findings obtained with the tapping task. Its eight sections deal with the role of intention, rate limits, the negative mean asynchrony, variability, models of error correction, perturbation studies, neural correlates of SMS, and SMS in musical contexts. The central theoretical issue is considered to be how best to characterize the perceptual information and the internal processes that enable people to achieve and maintain SMS. Recent research suggests that SMS is controlled jointly by two error correction processes (phase correction and period correction) that differ in their degrees of cognitive control and may be associated with different brain circuits. They exemplify the general distinction between subconscious mechanisms of action regulation and conscious processes involved in perceptual judgment and action planning.

1,204 citations

Journal ArticleDOI
25 Mar 1988-Science
TL;DR: The central mathematical concepts of self-organization in nonequilibrium systems are used to show how a large number of empirically observed features of temporal patterns can be mapped onto simple low-dimensional dynamical laws that are derivable from lower levels of description.
Abstract: In the search for principles of pattern generation in complex biological systems, an operational approach is presented that embraces both theory and experiment. The central mathematical concepts of self-organization in nonequilibrium systems (including order parameter dynamics, stability, fluctuations, and time scales) are used to show how a large number of empirically observed features of temporal patterns can be mapped onto simple low-dimensional (stochastic, nonlinear) dynamical laws that are derivable from lower levels of description. The theoretical framework provides a language and a strategy, accompanied by new observables, that may afford an understanding of dynamic patterns at several scales of analysis (including behavioral patterns, neural networks, and individual neurons) and the linkage among them.

1,042 citations

Journal ArticleDOI
TL;DR: A new principle of sensorimotor control of legged locomotion in an unpredictable environment is proposed on the basis of neurophysiological knowledge and a theory of nonlinear dynamics by investigating the performance of a bipedal model investigated by computer simulation.
Abstract: A new principle of sensorimotor control of legged locomotion in an unpredictable environment is proposed on the basis of neurophysiological knowledge and a theory of nonlinear dynamics. Stable and flexible locomotion is realized as a global limit cycle generated by a global entrainment between the rhythmic activities of a nervous system composed of coupled neural oscillators and the rhythmic movements of a musculo-skeletal system including interaction with its environment. Coordinated movements are generated not by slaving to an explicit representation of the precise trajectories of the movement of each part but by dynamic interactions among the nervous system, the musculo-skeletal system and the environment. The performance of a bipedal model based on the above principle was investigated by computer simulation. Walking movements stable to mechanical perturbations and to environmental changes were obtained. Moreover, the model generated not only the walking movement but also the running movement by changing a single parameter nonspecific to the movement. The transitions between the gait patterns occurred with hysteresis.

1,042 citations