scispace - formally typeset
Search or ask a question
Author

H C Card

Bio: H C Card is an academic researcher from University of Manchester. The author has contributed to research in topics: Semiconductor & Schottky barrier. The author has an hindex of 2, co-authored 2 publications receiving 1549 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a theoretical and experimental study has been made of silicon Schottky diodes in which the metal and semiconductor are separated by a thin interfacial film.
Abstract: A theoretical and experimental study has been made of silicon Schottky diodes in which the metal and semiconductor are separated by a thin interfacial film. A generalized approach is taken towards the interface states which considers their communication with both the metal and the semiconductor. Diodes were fabricated with interfacial films ranging from 8 to 26 A in thickness, and their characteristics are related to this model. The effects of reduced transmission coefficients together with fixed charge in the film are investigated. The interpretation of the current-voltage characteristics and the validity of the C−2-V method in the determination of diffusion potentials are discussed.

1,519 citations

Journal ArticleDOI
TL;DR: In this article, the oxide thickness of a tunnel MOS diode was varied over the range 10 to 45 A. This was done in an effort to establish the restrictions upon δ for which thermal equilibrium in the semiconductor is a valid approximation under the application of bias.
Abstract: The oxide thickness δ of a tunnel MOS diode is varied over the range 10 to 45 A. This is done in an effort to establish the restrictions upon δ for which thermal equilibrium in the semiconductor is a valid approximation under the application of bias. Particular attention is paid to the reverse-bias case, and most of the experimental results are for δ>25 A. A transition is observed from the behaviour of the ideal Schottky barrier to that of the thick-film MOS device. The ac conductance and capacitance together with dc current characteristics are studied as continuous functions of bias. From these results, information is obtained which relates the quasi-Fermi levels for (i) majority carriers, (ii) minority carriers and (iii) electrons in the interface states to δ. Thermal equilibrium statistics are found to be applicable to the semiconductor in the presence of a bias voltage when δgreater, similar30 A, which compares with a theoretical prediction of δgreater, similar13 A.

136 citations


Cited by
More filters
Journal ArticleDOI
02 Feb 2001-Science
TL;DR: The facile assembly of key electronic device elements from well-defined nanoscale building blocks may represent a step toward a "bottom-up" paradigm for electronics manufacturing.
Abstract: Because semiconductor nanowires can transport electrons and holes, they could function as building blocks for nanoscale electronics assembled without the need for complex and costly fabrication facilities. Boron- and phosphorous-doped silicon nanowires were used as building blocks to assemble three types of semiconductor nanodevices. Passive diode structures consisting of crossed p- and n-type nanowires exhibit rectifying transport similar to planar p-n junctions. Active bipolar transistors, consisting of heavily and lightly n-doped nanowires crossing a common p-type wire base, exhibit common base and emitter current gains as large as 0.94 and 16, respectively. In addition, p- and n-type nanowires have been used to assemble complementary inverter-like structures. The facile assembly of key electronic device elements from well-defined nanoscale building blocks may represent a step toward a "bottom-up" paradigm for electronics manufacturing.

3,143 citations

Journal ArticleDOI
TL;DR: In this article, a new analytical potential fluctuations model for the interpretation of current/voltage and capacitance/voltages measurements on spatially inhomogeneous Schottky contacts is presented.
Abstract: We present a new analytical potential fluctuations model for the interpretation of current/voltage and capacitance/voltage measurements on spatially inhomogeneous Schottky contacts. A new evaluation schema of current and capacitance barriers permits a quantitative analysis of spatially distributed Schottky barriers. In addition, our analysis shows also that the ideality coefficient n of abrupt Schottky contacts reflects the deformation of the barrier distribution under applied bias; a general temperature dependence for the ideality n is predicted. Our model offers a solution for the so‐called T0 problem. Not only our own measurements on PtSi/Si diodes, but also previously published ideality data for Schottky diodes on Si, GaAs, and InP agree with our theory.

1,439 citations

Journal ArticleDOI
TL;DR: Theoretical models of Schottky-barrier height formation are reviewed in this paper, with a particular emphasis on the examination of how these models agree with general physical principles, and new concepts on the relationship between interface dipole and chemical bond formation are analyzed, and shown to offer a coherent explanation of a wide range of experimental data.
Abstract: Theoretical models of Schottky-barrier height formation are reviewed. A particular emphasis is placed on the examination of how these models agree with general physical principles. New concepts on the relationship between interface dipole and chemical bond formation are analyzed, and shown to offer a coherent explanation of a wide range of experimental data.

1,064 citations

Journal ArticleDOI
TL;DR: The formation of the Schottky barrier height (SBH) is a complex problem because of the dependence of the SBH on the atomic structure of the metal-semiconductor (MS) interface as mentioned in this paper.
Abstract: The formation of the Schottky barrier height (SBH) is a complex problem because of the dependence of the SBH on the atomic structure of the metal-semiconductor (MS) interface. Existing models of the SBH are too simple to realistically treat the chemistry exhibited at MS interfaces. This article points out, through examination of available experimental and theoretical results, that a comprehensive, quantum-mechanics-based picture of SBH formation can already be constructed, although no simple equations can emerge, which are applicable for all MS interfaces. Important concepts and principles in physics and chemistry that govern the formation of the SBH are described in detail, from which the experimental and theoretical results for individual MS interfaces can be understood. Strategies used and results obtained from recent investigations to systematically modify the SBH are also examined from the perspective of the physical and chemical principles of the MS interface.

928 citations

Journal ArticleDOI
01 Oct 1995
TL;DR: In this article, the status and future prospects of emerging wide bandgap gallium nitride semiconductor devices are discussed, and the promising features of double heterostructures in relation to possible current injection lasers, LED's, and photodetectors are also elaborated on.
Abstract: Wide bandgap GaN has long been sought for its applications to blue and UV emitters and high temperature/high power electronic devices. Recent introduction of commercial blue and blue-green LED's have led to a plethora of activity in all three continents into the heterostructures based on GaN and its alloys with AlN and InN. In this review, the status and future prospects of emerging wide bandgap gallium nitride semiconductor devices are discussed. Recent successes in p-doping of GaN and its alloys with InN and AlN, and in n-doping with much reduced background concentrations have paved the way for the design, fabrication, and characterization of devices such as MESFET's, MISFET's, HBT's, LED's, and optically pumped lasers. We discuss the electrical properties of these devices and their drawbacks followed by future prospects. After a short elucidation of materials characteristics of the nitrides, we explore their electrical transport properties in detail. Recent progress in processing such as formation of low-resistance ohmic contacts and etching is also presented. The promising features of quarternaries and double heterostructures in relation to possible current injection lasers, LED's, and photodetectors are also elaborated on. >

554 citations