scispace - formally typeset
Search or ask a question
Author

H. C. Morris

Bio: H. C. Morris is an academic researcher. The author has contributed to research in topics: Inverse scattering transform & Korteweg–de Vries equation. The author has an hindex of 1, co-authored 1 publications receiving 1707 citations.

Papers
More filters
Book
01 Jun 1982
TL;DR: A discussion of the theory and applications of classical solitons is presented in this paper with a brief treatment of quantum mechanical effects which occur in particle physics and quantum field theory, including solitary waves and soliton, scattering transforms, the Schroedinger equation and the Korteweg-de Vries equation.
Abstract: A discussion of the theory and applications of classical solitons is presented with a brief treatment of quantum mechanical effects which occur in particle physics and quantum field theory. The subjects addressed include: solitary waves and solitons, scattering transforms, the Schroedinger equation and the Korteweg-de Vries equation, and the inverse method for the isospectral Schroedinger equation and the general solution of the solvable nonlinear equations. Also considered are: isolation of the Korteweg-de Vries equation in some physical examples, the Zakharov-Shabat/AKNS inverse method, kinks and the sine-Gordon equation, the nonlinear Schroedinger equation and wave resonance interactions, amplitude equations in unstable systems, and numerical studies of solitons. 45 references.

1,707 citations


Cited by
More filters
Book
Govind P. Agrawal1
01 Jan 1989
TL;DR: The field of nonlinear fiber optics has advanced enough that a whole book was devoted to it as discussed by the authors, which has been translated into Chinese, Japanese, and Russian languages, attesting to the worldwide activity in the field.
Abstract: Nonlinear fiber optics concerns with the nonlinear optical phenomena occurring inside optical fibers. Although the field ofnonlinear optics traces its beginning to 1961, when a ruby laser was first used to generate the second-harmonic radiation inside a crystal [1], the use ofoptical fibers as a nonlinear medium became feasible only after 1970 when fiber losses were reduced to below 20 dB/km [2]. Stimulated Raman and Brillouin scatterings in single-mode fibers were studied as early as 1972 [3] and were soon followed by the study of other nonlinear effects such as self- and crossphase modulation and four-wave mixing [4]. By 1989, the field ofnonlinear fiber optics has advanced enough that a whole book was devoted to it [5]. This book or its second edition has been translated into Chinese, Japanese, and Russian languages, attesting to the worldwide activity in the field of nonlinear fiber optics.

15,770 citations

Book
25 Jan 1991
TL;DR: The connection between faults and the seismicity generated is governed by the rate and state dependent friction laws -producing distinctive seismic styles of faulting and a gamut of earthquake phenomena including aftershocks, afterslip, earthquake triggering, and slow slip events.
Abstract: This essential reference for graduate students and researchers provides a unified treatment of earthquakes and faulting as two aspects of brittle tectonics at different timescales. The intimate connection between the two is manifested in their scaling laws and populations, which evolve from fracture growth and interactions between fractures. The connection between faults and the seismicity generated is governed by the rate and state dependent friction laws - producing distinctive seismic styles of faulting and a gamut of earthquake phenomena including aftershocks, afterslip, earthquake triggering, and slow slip events. The third edition of this classic treatise presents a wealth of new topics and new observations. These include slow earthquake phenomena; friction of phyllosilicates, and at high sliding velocities; fault structures; relative roles of strong and seismogenic versus weak and creeping faults; dynamic triggering of earthquakes; oceanic earthquakes; megathrust earthquakes in subduction zones; deep earthquakes; and new observations of earthquake precursory phenomena.

3,802 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that Rademacher's theorem for functions with values in Banach spaces implies that the function m is almost everywhere differentiable on (0, T) with dm dt (t)=vt~(t, x) -m( t ) <<.
Abstract: WAVE BREAKING FOR NONLINEAR NONLOCAL SHALLOW WATER EQUATIONS 233 THEOREM 2.1. Let T>O and vE C 1 ([0, T); H 2(R)). Then for every t~ [0, T) there exists at least one point ~(t)ER with ,~(t) := in~ Ivy(t, x)] = ~ ( t , ~(t)), and the function m is almost everywhere differentiable on (0, T) with dm dt (t)=vt~(t,~(t)) a.e. on (O,T). Proof. Let c>0 stand for a generic constant. Fix te[0, T) and define m(t):=infxcR[v~(t,x)]. If m(t))O we have that v(t , . ) is nondecreasing on R and therefore v(t,. ) 0 (recall v(t,. )cL2(R)) , so that we may assume re(t)<0. Since vx(t,. ) c H I ( R ) we see that limlxl~ ~ Vx(t, x)=0 so that there exists at least a ~(t) e R with re(t) =v~(t, ~(t)). Let now s, tC [0, T) be fixed. If re(t) <~rn(s) we have 0 < re(s) .~(t) = i n f [~x (~, x ) ] ~ ( t , ~(t)) <. ~=(~, ~(t)) -~x(t, ~(t)), and by the Sobolev embedding HI(R) C L ~ ( R ) we conclude that Im(8)-.~(t)l ~< Ivx(t)-v~(s)lL~(~) < c Iv~(t)-v~(8)l.l(R). Hence the mean-value theorem for functions with values in Banach spaces-Hi(R) in the present case--yields (see [12]) jm(t)-m(s)l<~clt-s j m a x [IVt~(T)JHI(R)], t, se[O,T). O~T~max{s,t} Since vt~cC([O,T), Hi(R)) , we see that m is locally Lipschitz on [0, T) and therefore Rademacher's theorem (cf. [14]) implies that m is almost everywhere differentiable on (0,T). Fix tC(0, T). We have that v~(t+h)-vx(t)h vt~(t) Hl(R) ---~0 as h--*O, and therefore vx( t+h ,y ) -vx ( t , y ) sup vtx(t,y) --~0 as h---~O, (2.1) ycl~ h in view of the continuous embedding H 1 ( R ) c L ~ (R). 234 A. C O N S T A N T I N AND J. E S C H E R By the definition of m, m(t+h) = v~(t+h, ((t+h)) <. v~(t+h, ((t)). Consequently, given h>0 , we obtain m( t+h) -m( t ) <<. h Letting h--~O + and using (2.1), we find lim sup m(t+h) -m( t ) h~_~0 + h

1,361 citations

Journal ArticleDOI
TL;DR: The concept of parity-time symmetric systems is rooted in non-Hermitian quantum mechanics where complex potentials obeying this symmetry could exhibit real spectra as discussed by the authors, which has applications in many fields of physics, e.g., in optics, metamaterials, acoustics, Bose-Einstein condensation, electronic circuitry, etc.
Abstract: The concept of parity-time symmetric systems is rooted in non-Hermitian quantum mechanics where complex potentials obeying this symmetry could exhibit real spectra. The concept has applications in many fields of physics, e.g., in optics, metamaterials, acoustics, Bose-Einstein condensation, electronic circuitry, etc. The inclusion of nonlinearity has led to a number of new phenomena for which no counterparts exist in traditional dissipative systems. Several examples of nonlinear parity-time symmetric systems in different physical disciplines are presented and their implications discussed.

938 citations