scispace - formally typeset
Search or ask a question
Author

H. De Man

Other affiliations: IMEC
Bio: H. De Man is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Orthogonal frequency-division multiplexing & Digital electronics. The author has an hindex of 10, co-authored 11 publications receiving 877 citations. Previous affiliations of H. De Man include IMEC.

Papers
More filters
Journal ArticleDOI
TL;DR: A new dynamic CMOS technique which is fully racefree, yet has high logic flexibility, and logic inversion is provided, which means higher logic flexibility and less transistors for the same function.
Abstract: Describes a new dynamic CMOS technique which is fully racefree, yet has high logic flexibility. The circuits operate racefree from two clocks /spl phi/ and /spl phi/~ regardless of their overlap time. In contrast to the critical clock skew specification in the conventional CMOS pipelined circuits, the proposed technique imposes no restriction to the amount of clock skew. The main building blocks of the NORA technique are dynamic CMOS and C/SUP 2/MOS logic functions. Static CMOS functions can also be employed. Logic composition rules to mix dynamic CMOS, C/SUP 2/MOS, and conventional CMOS will be presented. Different from Domino technique, logic inversion is also provided. This means higher logic flexibility and less transistors for the same function. The effects of charge redistribution, noise margin, and leakage in the dynamic CMOS blocks are also analyzed. Experimental results show the feasibility of the principles discussed.

309 citations

Proceedings ArticleDOI
20 Sep 1996
TL;DR: This paper addresses CoWare: an environment for design of heterogeneous systems on chip, based on a communicating processes data-model which supports encapsulation and refinement and makes a strict separation between functional and communication behaviour.
Abstract: The design problems encountered when designing heterogeneous systems are studied and solutions to these problems are proposed. It is shown why a single heterogeneous specification method ranging from concept to architecture is required and why it should cover issues as modularity design for reuse, reuse of designs and reuse of design environments. A heterogeneous system design environment based on cospecification, cosimulation and cosynthesis is proposed and its application is illustrated by means of a spread spectrum based pager system.

172 citations

Journal ArticleDOI
01 Jan 2001
TL;DR: In this paper, a simulation methodology to estimate the time-domain waveform of the substrate noise is applied to an 86-Kgate CMOS ASIC on a low-ohmic epi-type substrate.
Abstract: More and more system-on-chip designs require the integration of analog circuits on large digital chips and will therefore suffer from substrate noise coupling. To investigate the impact of substrate noise on analog circuits, information is needed about digital substrate noise generation. In this paper, a recently proposed simulation methodology to estimate the time-domain waveform of the substrate noise is applied to an 86-Kgate CMOS ASIC on a low-ohmic epi-type substrate. These simulation results have been compared with substrate noise measurements on this ASIC and the difference between the simulated and measured substrate noise rms voltage is less than 10%. The simulated time domain waveform and frequency spectrum of the substrate noise correspond well with the measurements, indicating the validity of this simulation methodology. Both measurements and simulations have been used to analyze the substrate noise generation in more detail. It has been found that direct noise coupling from the on-chip power supply to the substrate dominates the substrate noise generation and that more than 80% of the substrate noise is generated by simultaneous switching of the core cells. By varying the parameters of the simulation model, it has been concluded that a flip-chip packaging technique can reduce the substrate noise rms voltage by two orders of magnitude when compared to traditional wirebonding.

116 citations

Journal ArticleDOI
07 Aug 2002
TL;DR: In this article, the authors describe substrate noise reduction techniques for synchronous CMOS circuits using low-noise digital design techniques on a mixed-signal chip, fabricated in a 0.35 /spl mu/m CMOS process on an EPI-type substrate with 10 /spl Omega/cm EPI resistivity and 4 /spl µ/m EPI layer thickness.
Abstract: This paper describes substrate noise reduction techniques for synchronous CMOS circuits. Low-noise digital design techniques have been implemented and measured on a mixed-signal chip, fabricated in a 0.35 /spl mu/m CMOS process on an EPI-type substrate with 10 /spl Omega/cm EPI resistivity and 4 /spl mu/m EPI layer thickness. The test chip contains one reference design and two digital low-noise designs with the same basic architecture. Measurements show more than a factor of 2 on average in r.m.s. noise reduction with penalties of 3% in area and 4% in power for the low-noise design employing a supply-current waveform-shaping technique based on a clock tree with latencies. The second low-noise design employing separate substrate bias for both n- and p-wells, dual-supply, and on-chip decoupling achieves more than a factor of 2 reduction in r.m.s. noise, with, however, a 70% increase in area, but with a 5% decrease in power consumption.

81 citations

Journal ArticleDOI
TL;DR: Two digital baseband orthogonal frequency division multiplex (OFDM) signal processing ASICs, implementing respectively a quaternary phase-shift keying (QPSK)-based 80-Mb/s and a 64 quadrature amplitude modulation (QAM)-based 72-M b/s digital inner transceiver are described.
Abstract: With the advent of mobile communications, voice telecommunications became wireless. Future applications, however, target multimedia, messaging, and high-speed Internet access, all expressing the need for a broadband high-speed wireless access technique. Both the domestic multimedia and the wireless local area network (WLANs) business markets are addressed. Established systems deliver 2-11 Mb/s based on spectrally inefficient spread-spectrum techniques, where scalability has reached a limit. The next generation of modems requires spectrally more efficient low-power and highly integrated solutions. We describe here the design of two digital baseband orthogonal frequency division multiplex (OFDM) signal processing ASICs, implementing respectively a quaternary phase-shift keying (QPSK)-based 80-Mb/s and a 64 quadrature amplitude modulation (QAM)-based 72-Mb/s digital inner transceiver. The latter partially matches the Hiperlan/2 and IEEE 802.11a standards. Joint development of signal processing algorithms and architectures along with on-chip data transfer, control, and partitioning leads to a low-power, yet flexible and scalable implementation. Both ASICs were designed in a unique object-oriented C++ design flow starting from algorithm level. The ASICs were successfully tested in a 5-GHz testbed both for file data transfer and web-cam multimedia transmission.

59 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is shown that clock frequencies in excess of 200 MHz are feasible in a 3- mu m CMOS process, and a precharge technique with a true single-phase clock, which increases the clock frequency and reduces the skew problems, is used.
Abstract: It is shown that clock frequencies in excess of 200 MHz are feasible in a 3- mu m CMOS process. This performance can be obtained by means of clocking strategy, device sizing, and logic style selection. A precharge technique with a true single-phase clock, which increases the clock frequency and reduces the skew problems, is used. Device sizing with the help of an optimizing program improves circuit speed by a factor of 1.5-1.8. The logic depth is minimized to one instead of two or more, and pipeline structures are used wherever possible. Experimental results for several circuits which work at clock frequencies of 200-230 MHz are presented. SPICE simulation shows that some circuits could work up to 400-500 MHz. >

849 citations

Journal Article
TL;DR: In this article, the effects of switching transients in digital MOS circuits that perturb analog circuits integrated on the same die by means of coupling through the substrate were observed. And the authors showed that in such cases the substrate noise is highly dependent on layout geometry.
Abstract: An experimental technique is described for observing the effects of switching transients in digital MOS circuits that perturb analog circuits integrated on the same die by means of coupling through the substrate Various approaches to reducing substrate crosstalk (the use of physical separation of analog and digital circuits, guard rings, and a low-inductance substrate bias) are evaluated experimentally for a CMOS technology with a substrate comprising an epitaxial layer grown on a heavily doped bulk wafer Observations indicate that reducing the inductance in the substrate bias is the most effective Device simulations are used to show how crosstalk propagates via the heavily doped bulk and to predict the nature of substrate crosstalk in CMOS technologies integrated in uniform, lightly doped bulk substrates, showing that in such cases the substrate noise is highly dependent on layout geometry A method of including substrate effects in SPICE simulations for circuits fabricated on epitaxial, heavily doped substrates is developed >

567 citations

Journal ArticleDOI
01 Mar 1997
TL;DR: Co-design issues and their relationship to classical system implementation tasks are discussed to help develop a perspective on modern digital system design that relies on computer aided design (CAD) tools and methods.
Abstract: Most electronic systems, whether self contained or embedded, have a predominant digital component consisting of a hardware platform which executes software application programs. Hardware/software co-design means meeting system level objectives by exploiting the synergism of hardware and software through their concurrent design. Co-design problems have different flavors according to the application domain, implementation technology and design methodology. Digital hardware design has increasingly more similarities to software design. Hardware circuits are often described using modeling or programming languages, and they are validated and implemented by executing software programs, which are sometimes conceived for the specific hardware design. Current integrated circuits can incorporate one (or more) processor core(s) and memory array(s) on a single substrate. These "systems on silicon" exhibit a sizable amount of embedded software, which provides flexibility for product evolution and differentiation purposes. Thus the design of these systems requires designers to be knowledgeable in both hardware and software domains to make good design tradeoffs. The paper introduces various aspects of co-design. We highlight the commonalities and point out the differences in various co-design problems in some application areas. Co-design issues and their relationship to classical system implementation tasks are discussed to help develop a perspective on modern digital system design that relies on computer aided design (CAD) tools and methods.

469 citations

Journal ArticleDOI
TL;DR: The history of MPSoCs is surveyed to argue that they represent an important and distinct category of computer architecture and to survey computer-aided design problems relevant to the design of MP soCs.
Abstract: The multiprocessor system-on-chip (MPSoC) uses multiple CPUs along with other hardware subsystems to implement a system. A wide range of MPSoC architectures have been developed over the past decade. This paper surveys the history of MPSoCs to argue that they represent an important and distinct category of computer architecture. We consider some of the technological trends that have driven the design of MPSoCs. We also survey computer-aided design problems relevant to the design of MPSoCs.

435 citations

Journal ArticleDOI
13 Aug 2007
TL;DR: It is demonstrated that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts.
Abstract: This overview portrays the evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station's or radio port's coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment in multiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems.

376 citations