scispace - formally typeset
Search or ask a question
Author

H Haoshuo Chen

Bio: H Haoshuo Chen is an academic researcher. The author has contributed to research in topics: Multi-mode optical fiber & Optical communication. The author has an hindex of 1, co-authored 1 publications receiving 3 citations.

Papers
More filters
01 Jan 2014
TL;DR: The final author version and the galley proof are versions of the publication after peer review that features the final layout of the paper including the volume, issue and page numbers.
Abstract: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers.

3 citations


Cited by
More filters
Book
01 Jan 2006
TL;DR: Theorems and Formulas used in this chapter relate to theorems in optical waveguides and lightwave Circuits that describe the behaviour of Planar Waveguides through the response of the E-modulus effect.
Abstract: Preface 1. Wave Theory of Optical Waveguides 2. Planar Optical Waveguides 3. Optical Fibers 4. Couple Mode Theory 5. Nonlinear Optical Effects in Optical Fibers 6. Finite Element Method 7. Beam Propagation Method 8. Staircase Concatention Method 9. Planar Lightwave Circuits 10. Theorems and Formulas Appendix

359 citations

01 Jan 2008
TL;DR: In this article, the authors proposed a mode-field matched center-launching technique by fusion-splicing a single-mode fiber (SMF) pigtailed transmitter to the MMF, where the splicing condition is optimized to expand the core of SMF slightly so that it can match the mode field distribution of the fundamental mode of MMF.
Abstract: We report that the center-launching technique can be improved to selectively excite the fundamental mode of multimode fiber (MMF). This ldquomode-field matchedrdquo center-launching technique enables us to excite only the fundamental mode in the MMF and, consequently, avoid the inherent limitations imposed by the differential mode delay. We realize this mode-field matched center-launching technique simply by fusion-splicing a single-mode fiber (SMF) pigtailed transmitter to the MMF. The splicing condition is optimized to expand the core of SMF slightly so that it can match the mode field distribution of the fundamental mode of MMF. The results show that, by using this launching technique, we can achieve the transmission characteristics similar to SMF and drastically increase the bandwidth-distance product of MMF. For demonstrations, we have successfully transmitted 10- and 40-Gb/s signals over 12.2 and 3.7 km of MMF, respectively, without using any dispersion compensation techniques. We have also evaluated the robustness of the MMF link implemented by using the proposed launching technique against the mechanical perturbations such as the lateral offset between fiber connectors, fiber bending, and fiber shaking.

4 citations

Journal Article
TL;DR: For the ultra-high capacity need of SDM, Few Mode Fiber (FMF) was proposed as SDM best technology for obtaining ultra- high bit rates with long haul transmission and channel estimation techniques were proposed to enable the transmitter pre-shaping design for the linear effects mitigation.
Abstract: 1241 New Method For Modeling and Design Optical SDM Transmission System Using Long Haul FMF with PDM/DWDM Techniques Enabling QPSK Modulation Format Ibrahim Abdullah Musaddak Maher Department of electrical engineering, University of Babylon dr.ibrahim_ba@yahoo.com, www.theboss1@yahoo.com Abstract: This paper presents the modeling and design of ultra high capacity Space Division Multiplexing (SDM) transmission system. Polarization Division Multiplexing (PDM) and Dense Wavelength Division Multiplexing (DWDM) techniques are also proposed in this system to increase total system data rate. For the ultra-high capacity need of SDM, Few Mode Fiber (FMF) was proposed as SDM best technology for obtaining ultra-high bit rates with long haul transmission. The description and design of 8-DWDM channels over 7 modes SDM/PDM system was explored as future of ultra-high capacity optical network. A long-haul transmission of 1080 Km recorded for 8-WDM channels-7modes-SDM/PDM system by using QPSK modulation format. The total bit rate achieved by our designed system is 4.48 Tb/s at 40Gb/s. Channel estimation techniques were proposed to enable the transmitter pre-shaping design for the linear effects mitigation by using different DSP algorithms. The presence of linear and nonlinear losses limits the acceptable range of input power that produce the required BER for our proposed system from -4dBm to 4dBm.

1 citations