scispace - formally typeset
Search or ask a question
Author

H. Ishizaka

Bio: H. Ishizaka is an academic researcher from Kyoto University. The author has contributed to research in topics: Supercritical drying & Aerogel. The author has an hindex of 1, co-authored 1 publications receiving 265 citations.

Papers
More filters
Journal ArticleDOI
01 Jan 1999-Carbon
TL;DR: In this paper, a solgel polycondensation of resorcinol with formaldehyde and freeze drying with t -butanol was used to obtain mesoporous materials with high surface areas and large mesopore volumes.

278 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Aerogels form a new class of solids showing sophisticated potentialities for a range of applications, and can develop very attractive physical and chemical properties not achievable by other means of low temperature soft chemical synthesis.
Abstract: In the present review, aerogels designate dried gels with a very high relative pore volume. These are versatile materials that are synthesized in a first step by low-temperature traditional sol-gel chemistry. However, while in the final step most wet gels are often dried by evaporation to produce so-called xerogels, aerogels are dried by other techniques, essentially supercritical drying. As a result, the dry samples keep the very unusual porous texture which they had in the wet stage. In general these dry solids have very low apparent densities, large specific surface areas, and in most cases they exhibit amorphous structures when examined by X-ray diffraction (XRD) methods. In addition, they are metastable from the point of view of their thermodynamic properties. Consequently, they often undertake a structural evolution by chemical transformation, when aged in a liquid medium and/or heat treated. As aerogels combine the properties of being highly divided solids with their metastable character, they can develop very attractive physical and chemical properties not achievable by other means of low temperature soft chemical synthesis. In other words, they form a new class of solids showing sophisticated potentialities for a range of applications. These applications as well as chemical and physical aspects of these materials were regularly detailed and discussed in a series of symposia on aerogels,1-5 the last of them being held in Albuquerque in 2000.6 Reviews were also regularly published, either on both xerogels and aerogels7 or more focused on the applications of aerogels.8-13 The particularly interesting properties of aerogels arise from the extraordinary flexibility of the solgel processing, coupled with original drying techniques. The wet chemistry is not basically different for making xerogels and aerogels. As this common basis has been extensively detailed in recent books,14 it does not need to be reviewed. Compared to traditional xerogels, the originality of aerogels comes from * To whom all correspondence should be addressed. † Institut de Recherches sur la Catalyse. ‡ Laboratoire d’Application de la Chimie à l’Environnement. 4243 Chem. Rev. 2002, 102, 4243−4265

1,773 citations

Journal ArticleDOI
TL;DR: Methods for the preparation of mesoporous carbon materials with extremely high surface areas and ordered mesostructures, with potential applications as catalysts, separation media, and advanced electronic materials in many scientific disciplines are developed.
Abstract: Porous carbon materials are of interest in many applications because of their high surface area and physicochemical properties. Conventional syntheses can only produce randomly porous materials, with little control over the pore-size distributions, let alone mesostructures. Recent breakthroughs in the preparation of other porous materials have resulted in the development of methods for the preparation of mesoporous carbon materials with extremely high surface areas and ordered mesostructures, with potential applications as catalysts, separation media, and advanced electronic materials in many scientific disciplines. Current syntheses can be categorized as either hard-template or soft-template methods. Both are examined in this Review along with procedures for surface functionalization of the carbon materials obtained.

1,716 citations

Journal ArticleDOI
TL;DR: Lithium ion batteries, in which lithium ions shuttle between an insertion cathode and an insertion anode (e.g., carbon), emerged as the power source of choice for the highperformance rechargeable-battery market.
Abstract: The worldwide thirst for portable consumer electronics in the 1990s had an enormous impact on portable power. Lithium ion batteries, in which lithium ions shuttle between an insertion cathode (e.g., LiCoO2) and an insertion anode (e.g., carbon), emerged as the power source of choice for the highperformance rechargeable-battery market. The performance advantages were so significant that lithium ion batteries not only replaced Ni-Cd batteries but left the purported successor technology, nickel-metal hydride, in its wake.1 The thick metal plates of * To whom correspondence should be addressed. J.W.L: e-mail, jwlong@ccs.nrl.navy.mil; telephone, (+1)202-404-8697. B.D.: e-mail, bdunn@ucla.edu; telephone, (+1)310-825-1519. D.R.R.: e-mail, rolison@nrl.navy.mil; telephone, (+1)202-767-3617. H.S.W.: e-mail, white@chem.utah.edu; telephone, (+1)810-585-6256. † Naval Research Laboratory. ‡ UCLA. § University of Utah. 4463 Chem. Rev. 2004, 104, 4463−4492

1,167 citations

Journal ArticleDOI
TL;DR: An overview of carbon supports for Pt-based catalysts, with particular attention on new carbon materials, is presented in this paper, where the effect of substrate characteristics on catalyst properties, as electrocatalytic activity and stability in fuel cell environment, is discussed.
Abstract: To increase their electrochemically active surface area, catalysts supported on high surface area materials, commonly carbons, are widely used in low-temperature fuel cells. Recent studies have revealed that the physical properties of the carbon support can greatly affect the electrochemical properties of the fuel cell catalyst. It has been reported that carbon materials with both high surface area and good crystallinity can not only provide a high dispersion of Pt nanoparticles, but also facilitate electron transfer, resulting in better device performance. On this basis, novel non-conventional carbon materials have attracted much interest as electrocatalyst support because of their good electrical and mechanical properties and their versatility in pore size and pore distribution tailoring. These materials present a different morphology than carbon blacks both at the nanoscopic level in terms of their pore texture (for example mesopore carbon) and at the macroscopic level in terms of their form (for example microsphere). The examples are supports produced from ordered mesoporous carbons, carbon aerogels, carbon nanotubes, carbon nanohorns, carbon nanocoils and carbon nanofibers. The challenge is to develop carbon supports with high surface area, good electrical conductivity, suitable porosity to allow good reactant flux, and high stability in fuel cell environment, utilizing synthesis methods simple and not too expensive. This paper presents an overview of carbon supports for Pt-based catalysts, with particular attention on new carbon materials. The effect of substrate characteristics on catalyst properties, as electrocatalytic activity and stability in fuel cell environment, is discussed.

1,122 citations

Journal ArticleDOI
TL;DR: This review discusses recent research developments of VOC adsorption onto a variety of engineered carbonaceous adsorbents, including activated carbon, biochar, activated carbon fiber, carbon nanotube, graphene and its derivatives, carbon-silica composites, ordered mesoporous carbon, etc.

915 citations