scispace - formally typeset
Search or ask a question
Author

H.J.P. Eijsackers

Bio: H.J.P. Eijsackers is an academic researcher from Wageningen University and Research Centre. The author has contributed to research in topics: Ecosystem & Soil ecology. The author has an hindex of 1, co-authored 1 publications receiving 81 citations. Previous affiliations of H.J.P. Eijsackers include Stellenbosch University & VU University Amsterdam.

Papers
More filters
Journal ArticleDOI
TL;DR: The role of earthworms in succession is understood to improve their role in soil restoration and soil management, and limiting environmental factors seem to play a more important role than inherent ecological characteristics like r/K selection.

86 citations


Cited by
More filters
01 Jan 2009
TL;DR: In this paper, the authors used soil microcosms to show that functional dissimilarity among detritivorous species, not species number, drives community compositional effects on leaf litter mass loss and soil respiration, two key soil ecosystem processes.
Abstract: The loss of biodiversity can have significant impacts on ecosystem functioning, but the mechanisms involved lack empirical confirmation. Using soil microcosms, we show experimentally that functional dissimilarity among detritivorous species, not species number, drives community compositional effects on leaf litter mass loss and soil respiration, two key soil ecosystem processes. These experiments confirm theoretical predictions that biodiversity effects on ecosystem functioning can be predicted by the degree of functional differences among species.

444 citations

Journal ArticleDOI
TL;DR: It is proposed that in‐soil environmental risk assessments are made at in‐ and off‐field scale considering field boundary levels, and a new testing strategy which takes into account the relevant exposure routes for in‐ soil organisms and the potential direct and indirect effects is proposed.
Abstract: Following a request from EFSA, the Panel on Plant Protection Products and their Residues developed an opinion on the science behind the risk assessment of plant protection products for in-soil organisms. The current risk assessment scheme is reviewed, taking into account new regulatory frameworks and scientific developments. Proposals are made for specific protection goals for in-soil organisms being key drivers for relevant ecosystem services in agricultural landscapes such as nutrient cycling, soil structure, pest control and biodiversity. Considering the time-scales and biological processes related to the dispersal of the majority of in-soil organisms compared to terrestrial non-target arthropods living above soil, the Panel proposes that in-soil environmental risk assessments are made at in- and off-field scale considering field boundary levels. A new testing strategy which takes into account the relevant exposure routes for in-soil organisms and the potential direct and indirect effects is proposed. In order to address species recovery and long-term impacts of PPPs, the use of population models is also proposed.

142 citations

Journal ArticleDOI
TL;DR: It is shown that studied animal and microbial groups, with the exception of epigeic springtails, are negatively affected by the intensity of agriculture, meadows and crops in rotation exhibiting features similar to their permanent counterparts.
Abstract: A gradient of agricultural intensification (from permanent meadows to permanent crops, with rotation crops and meadows as intermediary steps) was studied in the course of the RMQS-Biodiv program, covering a regular grid of 109 sites spread over the whole area of French Brittany. Soil biota (earthworms, other macrofauna, microarthropods, nematodes, microorganisms) were sampled according to a standardized procedure, together with visual assessment of a Humus Index. We hypothesized that soil animal and microbial communities were increasingly disturbed along this gradient, resulting in decreasing species richness and decreasing abundance of most sensitive species groups. We also hypothesized that the application of organic matter could compensate for the negative effects of agricultural intensity by increasing the abundance of fauna relying directly on soil organic matter for their food requirements, i.e. saprophagous invertebrates. We show that studied animal and microbial groups, with the exception of epigeic springtails, are negatively affected by the intensity of agriculture, meadows and crops in rotation exhibiting features similar to their permanent counterparts. The latter result was interpreted as a rapid adaptation of soil biotic communities to periodic changes in land use provided the agricultural landscape remains stable. The application of pig and chicken slurry, of current practice in the study region, alone or in complement to mineral fertilization, proves to be favorable to saprophagous macrofauna and bacterivorous nematodes. A composite biotic index is proposed to synthesize our results, based on a selection of animals groups which responded the most to agricultural intensification or organic matter application: anecic earthworms, endogeic earthworms, macrofauna other than earthworms (macroarthropods and mollusks), saprophagous macrofauna other than earthworms (macroarthropods and mollusks), epigeic springtails, phytoparasitic nematodes, bacterivorous nematodes and microbial biomass. This composite index allowed scoring land uses and agricultural practices on the base of simple morphological traits of soil animals without identification at species level.

134 citations

Journal ArticleDOI
TL;DR: In this article, the management of earthworm and termite activity for the restoration of ecosystems is discussed, and the major obstacles hampering the utilization of soil engineer activity for restoring degraded, acid, compacted or crusted, polluted and eroded soils are summarized.

92 citations

01 Jan 2006
TL;DR: The most conspicuous biological inva- sions in terrestrial ecosystems have been by exotic plants, insects and vertebrates. as mentioned in this paper explored the idea that indigenous earthworm fauna and/or characteristics of their characteristics are common in ecosystems inhabited by native earthworms, especially where soils are undisturbed.
Abstract: The most conspicuous biological inva- sions in terrestrial ecosystems have been by exotic plants, insects and vertebrates. Invasions by exo- tic earthworms, although not as well studied, may be increasing with global commerce in agricul- ture, waste management and bioremediation. A number of cases has documented where invasive earthworms have caused significant changes in soil profiles, nutrient and organic matter dynamics, other soil organisms or plant commu- nities. Most of these cases are in areas that have been disturbed (e.g., agricultural systems) or were previously devoid of earthworms (e.g., north of Pleistocene glacial margins). It is not clear that such effects are common in ecosystems inhabited by native earthworms, especially where soils are undisturbed. We explore the idea that indigenous earthworm fauna and/or characteristics of their

91 citations