scispace - formally typeset
Search or ask a question
Author

H. K. Hall

Bio: H. K. Hall is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Cyclic compound. The author has an hindex of 1, co-authored 1 publications receiving 129 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The overall results indicate that the lack of polymerizability of gamma-butyrolactone should be attributed to the low strain of the ring, which shows much less geometric distortion in the ester group than delta-valerolactone, and the notable stability of the coiled conformations found in model compounds of poly-4-hydroxybutyrate.
Abstract: γ-Butyrolactone, unlike δ-valerolactone, does not polymerize despite a strain energy of ∼8 kcal mol-1 which could be relieved by opening the s-cis lactone ester bond to an s-trans ester bond in the polymer. To explain this anomaly, we have applied quantum mechanical methods to study the thermochemistry involved in the ring-opening reactions of γ-butyrolactone and δ-valerolactone, the conformational preferences of model molecules that mimic their corresponding homopolyesters, and the variation of enthalpy associated to the polymerizability of such two cyclic lactones. The overall results indicate that the lack of polymerizability of γ-butyrolactone should be attributed to the low strain of the ring, which shows much less geometric distortion in the ester group than δ-valerolactone, and the notable stability of the coiled conformations found in model compounds of poly-4-hydroxybutyrate.

153 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review provides a system-level analysis of sustainable polymers and outlines key criteria with respect to the feedstocks the polymers are derived from, the manner in which thepolymers are generated, and the end-of-use options.
Abstract: The replacement of current petroleum-based plastics with sustainable alternatives is a crucial but formidable challenge for the modern society. Catalysis presents an enabling tool to facilitate the development of sustainable polymers. This review provides a system-level analysis of sustainable polymers and outlines key criteria with respect to the feedstocks the polymers are derived from, the manner in which the polymers are generated, and the end-of-use options. Specifically, we define sustainable polymers as a class of materials that are derived from renewable feedstocks and exhibit closed-loop life cycles. Among potential candidates, aliphatic polyesters and polycarbonates are promising materials due to their renewable resources and excellent biodegradability. The development of renewable monomers, the versatile synthetic routes to convert these monomers to polyesters and polycarbonate, and the different end-of-use options for these polymers are critically reviewed, with a focus on recent advances in c...

574 citations

Journal ArticleDOI
TL;DR: In this paper, a critical review article captures some selected highlights of the emerging area of recyclable "green polymers" by focusing on the major progress made and the technical and environmental benefits obtained in the development of repurposing and depolymerization processes for chemical recycling of polymers at the end of their useful life.

431 citations

Journal ArticleDOI
TL;DR: It is reported that the ROP of γ-BL can, with a suitable catalyst, proceed smoothly to high conversions under ambient pressure to produce PγBL materials with a number-average molecular weight up to 30 kg mol(-1) and with controlled linear and/or cyclic topologies.
Abstract: Ring-opening polymerization (ROP) is a powerful synthetic methodology for the chemical synthesis of technologically important biodegradable aliphatic polyesters from cyclic esters or lactones. However, the bioderived five-membered γ-butyrolactone (γ-BL) is commonly referred as ‘non-polymerizable’ because of its low strain energy. The chemical synthesis of poly(γ-butyrolactone) (PγBL) through the ROP process has been realized only under ultrahigh pressure (20,000 atm, 160 °C) and only produces oligomers. Here we report that the ROP of γ-BL can, with a suitable catalyst, proceed smoothly to high conversions (90%) under ambient pressure to produce PγBL materials with a number-average molecular weight up to 30 kg mol–1 and with controlled linear and/or cyclic topologies. Remarkably, both linear and cyclic PγBLs can be recycled back into the monomer in quantitative yield by simply heating the bulk materials at 220 °C (linear polymer) or 300 °C (cyclic polymer) for one hour, which thereby demonstrates the complete recyclability of PγBL. Bio-derived γ-butyrolactone (γ-BL) is commonly referred to as ‘non-polymerizable’ due to its low strain energy. Now it has been shown that ring-opening polymerization of γ-BL can in fact proceed to high conversions under ambient pressure with a suitable catalyst, producing high-molecular-weight polymers with controlled topologies and complete recyclability.

394 citations

Journal ArticleDOI
27 Apr 2018-Science
TL;DR: A polymer system based on γ-butyrolactone (GBL) with a trans-ring fusion at the α and β positions renders the commonly considered as nonpolymerizable GBL ring readily polymerizable at room temperature under solvent-free conditions to yield a high–molecular weight polymer.
Abstract: The development of chemically recyclable polymers offers a solution to the end-of-use issue of polymeric materials and provides a closed-loop approach toward a circular materials economy. However, polymers that can be easily and selectively depolymerized back to monomers typically require low-temperature polymerization methods and also lack physical properties and mechanical strengths required for practical uses. We introduce a polymer system based on γ-butyrolactone (GBL) with a trans-ring fusion at the α and β positions. Such trans-ring fusion renders the commonly considered as nonpolymerizable GBL ring readily polymerizable at room temperature under solvent-free conditions to yield a high–molecular weight polymer. The polymer has enhanced thermostability and can be repeatedly and quantitatively recycled back to its monomer by thermolysis or chemolysis. Mixing of the two enantiomers of the polymer generates a highly crystalline supramolecular stereocomplex.

361 citations

Journal ArticleDOI
14 Feb 2019-Chem
TL;DR: In this article, the authors highlight the plastics derived from common four-, five-, six-, seven-, and eight-membered cyclic esters by covering synthetic strategies, material properties, and particularly, chemical recyclability.

189 citations