scispace - formally typeset
Search or ask a question
Author

H. Kavas

Bio: H. Kavas is an academic researcher from Istanbul Medeniyet University. The author has contributed to research in topics: Nanocomposite & Superparamagnetism. The author has an hindex of 26, co-authored 41 publications receiving 2339 citations. Previous affiliations of H. Kavas include Gebze Institute of Technology & Fatih University.

Papers
More filters
Journal ArticleDOI
TL;DR: Nanosize ZnxNi1−xFe2O4 spinel composites were synthesized by using surfactant (polyethylene glycol (PEG)) assisted hydrothermal route and characterized by TEM, XRD and VSM techniques as mentioned in this paper.

217 citations

Journal ArticleDOI
TL;DR: In this article, the structural, morphological and magnetic properties of the products were determined by X-ray powder diffractometry (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), respectively.

210 citations

Journal ArticleDOI
TL;DR: In this paper, the properties of Co x Zn 1− x Fe 2 O 4 (x = 0.0-1.0) nanoparticles synthesized by a polyethylene glycol (PEG)-assisted hydrothermal route were investigated.

190 citations

Journal ArticleDOI
TL;DR: In this article, a microwave assisted combustion method was used to synthesize nanocrystalline ZnxNi1−xFe2O4 from a stoichiometric mixture of corresponding metal nitrates and urea powders.

167 citations

Journal ArticleDOI
TL;DR: In this article, several divalent cations together with tetravalent Ti4+ ion were replaced by two trivalent Fe3+ ions of barium hexaferrite in the form of BaFe10M2+Ti4+O19.

138 citations


Cited by
More filters
01 Sep 1955
TL;DR: In this paper, the authors restrict their attention to the ferrites and a few other closely related materials, which are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present.
Abstract: In this chapter, we will restrict our attention to the ferrites and a few other closely related materials. The great interest in ferrites stems from their unique combination of a spontaneous magnetization and a high electrical resistivity. The observed magnetization results from the difference in the magnetizations of two non-equivalent sub-lattices of the magnetic ions in the crystal structure. Materials of this type should strictly be designated as “ferrimagnetic” and in some respects are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present. We shall not adhere to this special nomenclature except to emphasize effects, which are due to the existence of the sub-lattices.

2,659 citations

Journal ArticleDOI
TL;DR: The concluding guidelines provided herein should enable new nanostructures to be accessed facilely, and the properties of PVP-capped NPs for surface enhanced Raman spectroscopy (SERS), assembly, catalysis, and more are discussed.
Abstract: Colloidal synthesis offers a route to nanoparticles (NPs) with controlled composition and structural features. This Perspective describes the use of polyvinylpyrrolidone (PVP) to obtain such nanostructures. PVP can serve as a surface stabilizer, growth modifier, nanoparticle dispersant, and reducing agent. As shown with examples, its role depends on the synthetic conditions. This dependence arises from the amphiphilic nature of PVP along with the molecular weight of the selected PVP. These characteristics can affect nanoparticle growth and morphology by providing solubility in diverse solvents, selective surface stabilization, and even access to kinetically controlled growth conditions. This Perspective includes discussions of the properties of PVP-capped NPs for surface enhanced Raman spectroscopy (SERS), assembly, catalysis, and more. The contribution of PVP to these properties as well as its removal is considered. Ultimately, the NPs accessed through the use of PVP in colloidal syntheses are opening new applications, and the concluding guidelines provided herein should enable new nanostructures to be accessed facilely.

1,054 citations

Journal ArticleDOI
TL;DR: The state-of-the-art research in the area is described: the design and synthesis of catecholic molecules, their adsorption mechanisms and the stability of assemblies in solution, and their applications etc.
Abstract: The attachment strategy based on catecholic chemistry has been arousing renewed interest since the work on polymerized catecholic amine (polydopamine) (Messersmith et al., Science, 2007, 318, 426) was published. Catechols and their derived compounds can self-assemble on various inorganic and organic materials, including noble metals, metals, metal oxides, mica, silica, ceramics and even polymers. It opens a new route to the modification of various substrates and the preparation of functional composite materials by simple chemistry. However, there is still not a full review so far about the attachment chemistry despite the dramatically increasing number of publications. This critical review describes the state-of-the-art research in the area: the design and synthesis of catecholic molecules, their adsorption mechanisms and the stability of assemblies in solution, and their applications etc. Some perspectives on future development are raised (195 references).

1,039 citations

Journal ArticleDOI
TL;DR: This Review focuses on the analysis of new approaches and results in the field of solution combustion synthesis (SCS) obtained during recent years, emphasizing the chemical mechanisms that are responsible for rapid self-sustained combustion reactions.
Abstract: Solution combustion is an exciting phenomenon, which involves propagation of self-sustained exothermic reactions along an aqueous or sol–gel media. This process allows for the synthesis of a variety of nanoscale materials, including oxides, metals, alloys, and sulfides. This Review focuses on the analysis of new approaches and results in the field of solution combustion synthesis (SCS) obtained during recent years. Thermodynamics and kinetics of reactive solutions used in different chemical routes are considered, and the role of process parameters is discussed, emphasizing the chemical mechanisms that are responsible for rapid self-sustained combustion reactions. The basic principles for controlling the composition, structure, and nanostructure of SCS products, and routes to regulate the size and morphology of the nanoscale materials are also reviewed. Recently developed systems that lead to the formation of novel materials and unique structures (e.g., thin films and two-dimensional crystals) with unusual...

841 citations

Journal ArticleDOI
TL;DR: A matrix of parameters that can be varied to tune the magnetic properties of nanoparticles is outlined, focusing on the effect of size, shape, composition, and shell-core structure on saturation magnetization, coercivity, blocking temperature, and relaxation time.
Abstract: The tremendous interest in magnetic nanoparticles (MNPs) is reflected in published research that ranges from novel methods of synthesis of unique nanoparticle shapes and composite structures to a large number of MNP characterization techniques, and finally to their use in many biomedical and nanotechnology-based applications. The knowledge gained from this vast body of research can be made more useful if we organize the associated results to correlate key magnetic properties with the parameters that influence them. Tuning these properties of MNPs will allow us to tailor nanoparticles for specific applications, thus increasing their effectiveness. The complex magnetic behavior exhibited by MNPs is governed by many factors; these factors can either improve or adversely affect the desired magnetic properties. In this report, we have outlined a matrix of parameters that can be varied to tune the magnetic properties of nanoparticles. For practical utility, this review focuses on the effect of size, shape, composition, and shell-core structure on saturation magnetization, coercivity, blocking temperature, and relaxation time.

606 citations