scispace - formally typeset
Search or ask a question
Author

H. Kjeldsen

Other affiliations: Vilnius University
Bio: H. Kjeldsen is an academic researcher from Aarhus University. The author has contributed to research in topics: Stars & Asteroseismology. The author has an hindex of 42, co-authored 121 publications receiving 5468 citations. Previous affiliations of H. Kjeldsen include Vilnius University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors measured the masses of 40 stars on the RGB and 19 in the RC of the old metal-rich cluster NGC6791 and NGC6819 and found that the difference between the average mass of RGB and RC stars is small, but significant.
Abstract: Mass loss of red giant branch (RGB) stars is still poorly determined, despite its crucial role in the chemical enrichment of galaxies. Thanks to the recent detection of solar-like oscillations in G-K giants in open clusters with Kepler, we can now directly determine stellar masses for a statistically significant sample of stars in the old open clusters NGC6791 and NGC6819. The aim of this work is to constrain the integrated RGB mass loss by comparing the average mass of stars in the red clump (RC) with that of stars in the low-luminosity portion of the RGB (i.e. stars with L <~ L(RC)). Stellar masses were determined by combining the available seismic parameters numax and Dnu with additional photometric constraints and with independent distance estimates. We measured the masses of 40 stars on the RGB and 19 in the RC of the old metal-rich cluster NGC6791. We find that the difference between the average mass of RGB and RC stars is small, but significant (Delta M=0.09 +- 0.03 (random) +- 0.04 (systematic) Msun). Interestingly, such a small DeltaM does not support scenarios of an extreme mass loss for this metal-rich cluster. If we describe the mass-loss rate with Reimers' prescription, a first comparison with isochrones suggests that the observed DeltaM is compatible with a mass-loss efficiency parameter in the range 0.1 <~ eta <~ 0.3. Less stringent constraints on the RGB mass-loss rate are set by the analysis of the ~ 2 Gyr-old NGC6819, largely due to the lower mass loss expected for this cluster, and to the lack of an independent and accurate distance determination. In the near future, additional constraints from frequencies of individual pulsation modes and spectroscopic effective temperatures, will allow further stringent tests of the Dnu and numax scaling relations, which provide a novel, and potentially very accurate, means of determining stellar radii and masses.

335 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe processing procedures developed by the Kepler Asteroseismic Science Consortium (KASC) to prepare light curves that are optimized for the solar-like oscillating stars in which outliers, jumps and drifts are corrected.
Abstract: The Kepler mission is providing photometric data of exquisite quality for the asteroseismic study of different classes of pulsating stars. These analyses place particular demands on the pre-processing of the data, over a range of timescales from minutes to months. Here, we describe processing procedures developed by the Kepler Asteroseismic Science Consortium (KASC) to prepare light curves that are optimized for the asteroseismic study of solar-like oscillating stars in which outliers, jumps and drifts are corrected.

278 citations

Journal ArticleDOI
TL;DR: In this article, a long-baseline interferometry campaign using the PAVO beam combiner at the CHARA Array was used to measure the angular sizes of five main-sequence stars, one subgiant and four red giant stars for which solar-like oscillations have been detected by either Kepler or CoRoT.
Abstract: We present results of a long-baseline interferometry campaign using the PAVO beam combiner at the CHARA Array to measure the angular sizes of five main-sequence stars, one subgiant and four red giant stars for which solar-like oscillations have been detected by either Kepler or CoRoT. By combining interferometric angular diameters, Hipparcos parallaxes, asteroseismic densities, bolometric fluxes and high-resolution spectroscopy we derive a full set of near model-independent fundamental properties for the sample. We first use these properties to test asteroseismic scaling relations for the frequency of maximum power (nu_max) and the large frequency separation (Delta_nu). We find excellent agreement within the observational uncertainties, and empirically show that simple estimates of asteroseismic radii for main-sequence stars are accurate to <~4%. We furthermore find good agreement of our measured effective temperatures with spectroscopic and photometric estimates with mean deviations for stars between T_eff = 4600-6200 K of -22+/-32 K (with a scatter of 97K) and -58+/-31 K (with a scatter of 93 K), respectively. Finally we present a first comparison with evolutionary models, and find differences between observed and theoretical properties for the metal-rich main-sequence star HD173701. We conclude that the constraints presented in this study will have strong potential for testing stellar model physics, in particular when combined with detailed modelling of individual oscillation frequencies.

266 citations

Journal ArticleDOI
TL;DR: In this paper, a global model was proposed to estimate the granulation background signal and the global oscillation parameters, such as the frequency of maximum oscillation power, for a large sample of red giants and determine their asteroseismic fundamental parameters.
Abstract: Clear power excess in a frequency range typical for solar-type oscillations in red giants has been detected in more than 1000 stars, which have been observed during the first 138 days of the science operation of the NASA Kepler satellite. This sample includes stars in a wide mass and radius range with spectral types G and K, extending in luminosity from the bottom of the giant branch up to high-luminous red giants. The high-precision asteroseismic observations with Kepler provide a perfect source for testing stellar structure and evolutionary models, as well as investigating the stellar population in our Galaxy. We fit a global model to the observed frequency spectra, which allows us to accurately estimate the granulation background signal and the global oscillation parameters, such as the frequency of maximum oscillation power. We find regular patterns of radial and non-radial oscillation modes and use a new technique to automatically identify the mode degree and the characteristic frequency separations between consecutive modes of the same spherical degree. In most cases, we can also measure the small separation. The seismic parameters are used to estimate stellar masses and radii and to place the stars in an H-R diagram by using an extensive grid of stellar models that covers a wide parameter range. Using Bayesian techniques throughout our analysis allows us to determine reliable uncertainties for all parameters. We provide accurate seismic parameters and their uncertainties for a large sample of red giants and determine their asteroseismic fundamental parameters. We investigate the influence of the stars' metallicities on their positions in the H-R diagram. We study the red-giant populations in the red clump and bump and compare them to a synthetic population and find a mass and metallicity gradient in the red clump and clear evidence of a secondary-clump population.

254 citations

Journal ArticleDOI
TL;DR: A detailed spectroscopic study of 93 solar-type stars that were targets of the NASA/Kepler mission and provided detailed chemical composition of each target is presented in this paper.
Abstract: We present a detailed spectroscopic study of 93 solar-type stars that are targets of the NASA/Kepler mission and provide detailed chemical composition of each target. We find that the overall metallicity is well-represented by Fe lines. Relative abundances of light elements (CNO) and alpha-elements are generally higher for low-metallicity stars. Our spectroscopic analysis benefits from the accurately measured surface gravity from the asteroseismic analysis of the Kepler light curves. The log g parameter is known to better than 0.03 dex and is held fixed in the analysis. We compare our Teff determination with a recent colour calibration of V-K (TYCHO V magnitude minus 2MASS Ks magnitude) and find very good agreement and a scatter of only 80 K, showing that for other nearby Kepler targets this index can be used. The asteroseismic log g values agree very well with the classical determination using Fe1-Fe2 balance, although we find a small systematic offset of 0.08 dex (asteroseismic log g values are lower). The abundance patterns of metals, alpha elements, and the light elements (CNO) show that a simple scaling by [Fe/H] is adequate to represent the metallicity of the stars, except for the stars with metallicity below -0.3, where alpha-enhancement becomes important. However, this is only important for a very small fraction of the Kepler sample. We therefore recommend that a simple scaling with [Fe/H] be employed in the asteroseismic analyses of large ensembles of solar-type stars.

225 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present an updated version of the AESOPUS code used to compute stellar evolutionary tracks in Padova, which is the result of a thorough revision of put physics, together with the inclusion of the pre-main sequence phase.
Abstract: We present the updated version of the code used to compute stellar evolutionary tracks in Padova. It is the result of a thorough revision of the major in put physics, together with the inclusion of the pre‐main sequence phase, not present in our previous releases of stellar models. Another innovative aspect is the possibility of prompt ly generating accurate opacity tables fully consistent with any selected initial chemical composition, by coupling the OPAL opacity data at high temperatures to the molecular opacities computed with our AESOPUS code (Marigo & Aringer 2009). In this work we present extended sets of stellar evolutionary models for various initial chemical compositions, while other set s with different metallicities and/or different distributions of heavy elements are being computed. For the present release of models we adopt the solar distribution of heavy elements from the recent revision by Caffau et al. (2011), corresponding to a Sun’s metallicity Z≃ 0.0152. From all computed sets of stellar tracks, we also derive isochrones in several photometric systems. The aim is to provide the community with the basic tools to model star clusters and galaxies by means of population synthesis techniques.

3,392 citations

Journal ArticleDOI
TL;DR: In this work, extended sets of stellar evolutionary models for various initial chemical compositions are presented, while other set s with different metallicities and/or different distributions of heavy elements are being computed.
Abstract: We present the updated version of the code used to compute stellar evolutionary tracks in Padova. It is the result of a thorough revision of the major input physics, together with the inclusion of the pre-main sequence phase, not present in our previous releases of stellar models. Another innovative aspect is the possibility of promptly generating accurate opacity tables fully consistent with any selected initial chemical composition, by coupling the OPAL opacity data at high temperatures to the molecular opacities computed with our AESOPUS code (Marigo & Aringer 2009). In this work we present extended sets of stellar evolutionary models for various initial chemical compositions, while other sets with different metallicities and/or different distributions of heavy elements are being computed. For the present release of models we adopt the solar distribution of heavy elements from the recent revision by Caffau et al. (2011), corresponding to a Sun's metallicity Z=0.0152. From all computed sets of stellar tracks, we also derive isochrones in several photometric systems. The aim is to provide the community with the basic tools to model star clusters and galaxies by means of population synthesis techniques.

3,175 citations

Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as discussed by the authors is an open source software package for modeling the evolution of stellar structures and composition. But it is not suitable for large-scale systems such as supernovae.
Abstract: We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA star. Improvements in MESA star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 M ? stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA star solves the fully coupled stellar structure and composition equations, and we show how this has improved the scaling of MESA's calculational speed on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit that packages all the required components needed to form a unified, maintained, and well-validated build environment for MESA. We also highlight a few tools developed by the community for rapid visualization of MESA star results.

2,761 citations

Journal ArticleDOI
TL;DR: In this paper, a set of models for solar metallicity, where the effects of rotation are accounted for in a homogeneous way, is presented, and a grid of 48 different stellar evolutionary tracks, both rotating and non-rotating, at Z ǫ = 0.014, spanning a wide mass range from 0.8 to 120 m ⊙.
Abstract: Aims. Many topical astrophysical research areas, such as the properties of planet host stars, the nature of the progenitors of different types of supernovae and gamma ray bursts, and the evolution of galaxies, require complete and homogeneous sets of stellar models at different metallicities in order to be studied during the whole of cosmic history. We present here a first set of models for solar metallicity, where the effects of rotation are accounted for in a homogeneous way.Methods. We computed a grid of 48 different stellar evolutionary tracks, both rotating and non-rotating, at Z = 0.014, spanning a wide mass range from 0.8 to 120 M ⊙ . For each of the stellar masses considered, electronic tables provide data for 400 stages along the evolutionary track and at each stage, a set of 43 physical data are given. These grids thus provide an extensive and detailed data basis for comparisons with the observations. The rotating models start on the zero-age main sequence (ZAMS) with a rotation rate υ ini /υ crit = 0.4. The evolution is computed until the end of the central carbon-burning phase, the early asymptotic giant branch (AGB) phase, or the core helium-flash for, respectively, the massive, intermediate, and both low and very low mass stars. The initial abundances are those deduced by Asplund and collaborators, which best fit the observed abundances of massive stars in the solar neighbourhood. We update both the opacities and nuclear reaction rates, and introduce new prescriptions for the mass-loss rates as stars approach the Eddington and/or the critical velocity. We account for both atomic diffusion and magnetic braking in our low-mass star models.Results. The present rotating models provide a good description of the average evolution of non-interacting stars. In particular, they reproduce the observed main-sequence width, the positions of the red giant and supergiant stars in the Hertzsprung-Russell (HR) diagram, the observed surface compositions and rotational velocities. Very interestingly, the enhancement of the mass loss during the red-supergiant stage, when the luminosity becomes supra-Eddington in some outer layers, help models above 15−20 M ⊙ to lose a significant part of their hydrogen envelope and evolve back into the blue part of the HR diagram. This result has interesting consequences for the blue to red supergiant ratio, the minimum mass for stars to become Wolf-Rayet stars, and the maximum initial mass of stars that explode as type II−P supernovae.

1,654 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived an improved activity-age calibration for F7-K2 dwarfs (0:5 mag < B -V < 0.9 mag).
Abstract: While the strong anticorrelation between chromospheric activity and age has led to the common use of the Ca II H and K emission index (R'_(HK) = L_(HK)/L_(bol)) as an empirical age estimator for solar-type dwarfs, existing activity-age relations produce implausible ages at both high and low activity levels.We have compiled R'_(HK) HK data from the literature for young stellar clusters, richly populating for the first time the young end of the activity-age relation. Combining the cluster activity data with modern cluster age estimates and analyzing the color dependence of the chromospheric activity age index,we derive an improved activity-age calibration for F7-K2 dwarfs (0:5 mag < B - V < 0.9 mag). We also present a more fundamentally motivated activity-age calibration that relies on conversion of R'_(HK) values through the Rossby number to rotation periods and then makes use of improved gyrochronology relations. We demonstrate that our new activity-age calibration has typical age precision of ~0.2 dex for normal solar-type dwarfs aged between the Hyades and the Sun (~0.6-4.5 Gyr). Inferring ages through activity-rotation-age relations accounts for some color-dependent effects and systematically improves the age estimates (albeit only slightly). We demonstrate that coronal activity as measured through the fractional X-ray luminosity (R_X = L_X/L_(bol)) has nearly the same age- and rotation inferring capability as chromospheric activity measured through R'_(HK). As a first application of our calibrations, we provide new activity-derived age estimates for a volume-limited sample of the 108 solar-type field dwarfs within 16 pc.

1,325 citations