scispace - formally typeset
Search or ask a question
Author

H Kodama

Bio: H Kodama is an academic researcher. The author has contributed to research in topics: Hyperactivation & Acrosome reaction. The author has an hindex of 1, co-authored 1 publications receiving 578 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The fine balance between ROS production and scavenging, as well as the right timing and site for ROS production are of paramount importance for acquisition of fertilizing ability.
Abstract: Although high concentrations of reactive oxygen species (ROS) cause sperm pathology (ATP depletion leading to insufficient axonemal phosphorylation, lipid peroxidation and loss of motility and viability), recent evidence demonstrates that low and controlled concentrations of these ROS play an important role in sperm physiology. Reactive oxygen species, such as the superoxide anion, hydrogen peroxide and nitric oxide, induce sperm hyperactivation, capacitation or the acrosome reaction in vitro. The ROS involved in these processes may vary depending on experimental conditions, but all the evidence converges to describe these events as ‘oxidative’ or ‘redox regulated’. Human sperm capacitation and acrosome reaction are associated with extracellular production of a superoxide anion that is thought to originate from a membrane ‘oxidase’. The enzymes responsible for tyrosine phosphorylation‐dephosphorylation of sperm proteins are possible targets for ROS since mild oxidative conditions cause increases in protein tyrosine phosphorylation and acrosome reaction. The lipid peroxidation resulting from low concentrations of ROS promotes binding to the zona pellucida and may trigger the release of unesterified fatty acids from the sperm plasma membrane. The fine balance between ROS production and scavenging, as well as the right timing and site for ROS production are of paramount importance for acquisition of fertilizing ability.

620 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Evidence for new approaches for improving the performance of cryopreserved semen is offered and factors affecting the proportion of survivors and functional status of survivors are reviewed.

1,383 citations

Journal ArticleDOI
TL;DR: High levels of ROS are detrimental to the fertility potential both in natural and assisted conception states.

1,348 citations

Journal ArticleDOI
TL;DR: This review will provide an overview of oxidative biochemistry related to sperm health and identify which men are most at risk of oxidative infertility, and outline methods available for diagnosing oxidative stress and the various treatments available.
Abstract: Oxidative stress occurs when the production of potentially destructive reactive oxygen species (ROS) exceeds the bodies own natural antioxidant defenses, resulting in cellular damage. Oxidative stress is a common pathology seen in approximately half of all infertile men. ROS, defined as including oxygen ions, free radicals and peroxides are generated by sperm and seminal leukocytes within semen and produce infertility by two key mechanisms. First, they damage the sperm membrane, decreasing sperm motility and its ability to fuse with the oocyte. Second, ROS can alter the sperm DNA, resulting in the passage of defective paternal DNA on to the conceptus. This review will provide an overview of oxidative biochemistry related to sperm health and will identify which men are most at risk of oxidative infertility. Finally, the review will outline methods available for diagnosing oxidative stress and the various treatments available.

1,231 citations

Journal ArticleDOI
TL;DR: Extensive research in the Cleveland Clinic indicates that the seminal oxidative stress test has diagnostic and prognostic capabilities beyond those of conventional tests of sperm quality or functions and may be of particular importance to the future management of male infertility.
Abstract: Extensive research in our center at the Cleveland Clinic indicates that the seminal oxidative stress test has diagnostic and prognostic capabilities beyond those of conventional tests of sperm quality or functions. An oxidative stress test can accurately discriminate between fertile and infertile men and identify patients with a clinical diagnosis of male-factor infertility who are likely to initiate a pregnancy if they are followed over a period of time. In addition, the test can help select subgroups of patients with infertility in which oxidative stress is a significant factor, and who may benefit from antioxidant supplementation. Incorporation of such a test into routine andrology laboratory practice may be of particular importance to the future management of male infertility. In recent years, the generation of reactive oxygen species (ROS) in the male reproductive tract has become a real concern because of their potential toxic effects at high levels on sperm quality and function. ROS are highly reactive oxidizing agents belonging to the class of free radicals (Aitken, 1994). A free radical is defined as ‘‘any atom or molecule that possesses one or more unpaired electrons’’ (Warren et al, 1987). Recent reports have indicated that high levels of ROS are detected in semen samples of 25% to 40% of infertile men (de Lamirande et al, 1995; Padron et al, 1997). However, a strong body of evidence suggests that small amounts of ROS are necessary for spermatozoa to acquire fertilizing capabilities (Aitken, 1999). Spermatozoa, like all cells living in aerobic conditions, constantly face the oxygen (O2) paradox: O2 is required to support life, but its metabolites such as ROS can modify cell functions, endanger cell survival, or both (de Lamirande and Gagnon, 1995). Hence, ROS must be continuously inactivated to keep only a small

606 citations

Journal ArticleDOI
TL;DR: There is a dynamic interplay between pro- and anti-oxidant substances in human ejaculate and a threshold for ROS levels that may induce functional sperm ability or may lead to male infertility is unsolved.
Abstract: There is a dynamic interplay between pro- and anti-oxidant substances in human ejaculate. Excessive reactive oxygen species (ROS) generation can overwhelm protective mechanism and initiate changes in lipid and/or protein layers of sperm plasma membranes. Additionally, changes in DNA can be induced. The essential steps of lipid peroxidation have been listed as well as antioxidant substances of semen. A variety of detection techniques of lipid peroxidation have been summarized together with the lipid components of sperm membranes that can be subjected to stress. It is unsolved, a threshold for ROS levels that may induce functional sperm ability or may lead to male infertility.

601 citations