scispace - formally typeset
Search or ask a question
Author

H.L. Lung

Bio: H.L. Lung is an academic researcher from IBM. The author has contributed to research in topics: Phase-change memory & Non-volatile memory. The author has an hindex of 16, co-authored 42 publications receiving 2085 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This work discusses the critical aspects that may affect the scaling of PCRAM, including materials properties, power consumption during programming and read operations, thermal cross-talk between memory cells, and failure mechanisms, and discusses experiments that directly address the scaling properties of the phase-change materials themselves.
Abstract: Nonvolatile RAM using resistance contrast in phase-change materials [or phase-change RAM (PCRAM)] is a promising technology for future storage-class memory. However, such a technology can succeed only if it can scale smaller in size, given the increasingly tiny memory cells that are projected for future technology nodes (i.e., generations). We first discuss the critical aspects that may affect the scaling of PCRAM, including materials properties, power consumption during programming and read operations, thermal cross-talk between memory cells, and failure mechanisms. We then discuss experiments that directly address the scaling properties of the phase-change materials themselves, including studies of phase transitions in both nanoparticles and ultrathin films as a function of particle size and film thickness. This work in materials directly motivated the successful creation of a series of prototype PCRAM devices, which have been fabricated and tested at phase-change material cross-sections with extremely small dimensions as low as 3 nm × 20 nm. These device measurements provide a clear demonstration of the excellent scaling potential offered by this technology, and they are also consistent with the scaling behavior predicted by extensive device simulations. Finally, we discuss issues of device integration and cell design, manufacturability, and reliability.

1,018 citations

Proceedings ArticleDOI
02 Oct 2006
TL;DR: In this paper, a novel Pillar phase change memory based on fully integrated test arrays in 180nm CMOS technology has been successfully fabricated, where a current-confining Pillar structure leads to a self-heating at the center of the chalcogenide layer.
Abstract: A novel Pillar phase change memory based on fully integrated test arrays in 180nm CMOS technology has been successfully fabricated. A current-confining Pillar structure leads to a self-heating at the center of the chalcogenide layer, and needs only one additional mask level for its fabrication. Switching characteristics with write currents less than 900muA at 75nm diameter and multilevel operation are reported

218 citations

Proceedings ArticleDOI
01 Dec 2006
TL;DR: In this article, an ultra-thin phase-change bridge (PCB) memory cell, implemented with doped GeSb, is shown with < 100muA RESET current.
Abstract: An ultra-thin phase-change bridge (PCB) memory cell, implemented with doped GeSb, is shown with < 100muA RESET current. The device concept provides for simplified scaling to small cross-sectional area (60nm2) through ultra-thin (3nm) films; the doped GeSb phase-change material offers the potential for both fast crystallization and good data retention

193 citations

Proceedings ArticleDOI
12 Jun 2007
TL;DR: In this article, the pore diameter is accurately defined by intentionally creating a "keyhole" with conformal deposition, and a novel "pore" phase change memory cell, whose critical dimension (CD) is independent of lithography, is demonstrated.
Abstract: We have successfully demonstrated a novel "pore" phase change memory cell, whose critical dimension (CD) is independent of lithography. Instead, the pore diameter is accurately defined by intentionally creating a "keyhole" with conformal deposition. Fully integrated 256 kbit test chips have been fabricated in 180nm CMOS technology. We report SET times of 80 ns, RESET currents less than 250 muA, and accurate sub-lithographic CDs that can be less than 20% the size of the lithographically -defined diameter.

126 citations

Proceedings ArticleDOI
01 Dec 2011
TL;DR: In this article, the authors explored the engineering of GeSbTe ternary alloys along an isoelectronic tie line and the Ge/Sb 2 Te 3 tie line with the hope of finding a high performance material.
Abstract: Phase change memory has long suffered from conflicting material properties between switching speed and thermal stability. This study explores the engineering of GeSbTe ternary alloys along an isoelectronic tie line and the Ge/Sb 2 Te 3 tie line with the hope of finding a high performance material. Our efforts resulted in a new material that considerably outperforms the conventional GST-225. The switching speed is similar to undoped GST-225, with ∼ 30% lower reset current, and nearly 100°C higher T x , thus much better thermal stability. The promising properties of this new material are demonstrated in a 128Mb chip and tested both at wafer level and as packaged dies. These devices showed 1E8 cycling endurance and withstood 190 °C testing.

86 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: This review looks at the unique property combination that characterizes phase-change materials, in particular the contrast between the amorphous and crystalline states, and the origin of the fast crystallization kinetics.
Abstract: Phase-change materials are some of the most promising materials for data-storage applications. They are already used in rewriteable optical data storage and offer great potential as an emerging non-volatile electronic memory. This review looks at the unique property combination that characterizes phase-change materials. The crystalline state often shows an octahedral-like atomic arrangement, frequently accompanied by pronounced lattice distortions and huge vacancy concentrations. This can be attributed to the chemical bonding in phase-change alloys, which is promoted by p-orbitals. From this insight, phase-change alloys with desired properties can be designed. This is demonstrated for the optical properties of phase-change alloys, in particular the contrast between the amorphous and crystalline states. The origin of the fast crystallization kinetics is also discussed.

2,985 citations

Proceedings ArticleDOI
20 Jun 2009
TL;DR: This work proposes, crafted from a fundamental understanding of PCM technology parameters, area-neutral architectural enhancements that address these limitations and make PCM competitive with DRAM.
Abstract: Memory scaling is in jeopardy as charge storage and sensing mechanisms become less reliable for prevalent memory technologies, such as DRAM. In contrast, phase change memory (PCM) storage relies on scalable current and thermal mechanisms. To exploit PCM's scalability as a DRAM alternative, PCM must be architected to address relatively long latencies, high energy writes, and finite endurance.We propose, crafted from a fundamental understanding of PCM technology parameters, area-neutral architectural enhancements that address these limitations and make PCM competitive with DRAM. A baseline PCM system is 1.6x slower and requires 2.2x more energy than a DRAM system. Buffer reorganizations reduce this delay and energy gap to 1.2x and 1.0x, using narrow rows to mitigate write energy and multiple rows to improve locality and write coalescing. Partial writes enhance memory endurance, providing 5.6 years of lifetime. Process scaling will further reduce PCM energy costs and improve endurance.

1,568 citations

Journal ArticleDOI
20 Apr 2010
TL;DR: The physics behind this large resistivity contrast between the amorphous and crystalline states in phase change materials is presented and how it is being exploited to create high density PCM is described.
Abstract: In this paper, recent progress of phase change memory (PCM) is reviewed. The electrical and thermal properties of phase change materials are surveyed with a focus on the scalability of the materials and their impact on device design. Innovations in the device structure, memory cell selector, and strategies for achieving multibit operation and 3-D, multilayer high-density memory arrays are described. The scaling properties of PCM are illustrated with recent experimental results using special device test structures and novel material synthesis. Factors affecting the reliability of PCM are discussed.

1,488 citations

Proceedings ArticleDOI
20 Jun 2009
TL;DR: This paper analyzes a PCM-based hybrid main memory system using an architecture level model of PCM and proposes simple organizational and management solutions of the hybrid memory that reduces the write traffic to PCM, boosting its lifetime from 3 years to 9.7 years.
Abstract: The memory subsystem accounts for a significant cost and power budget of a computer system. Current DRAM-based main memory systems are starting to hit the power and cost limit. An alternative memory technology that uses resistance contrast in phase-change materials is being actively investigated in the circuits community. Phase Change Memory (PCM) devices offer more density relative to DRAM, and can help increase main memory capacity of future systems while remaining within the cost and power constraints.In this paper, we analyze a PCM-based hybrid main memory system using an architecture level model of PCM.We explore the trade-offs for a main memory system consisting of PCMstorage coupled with a small DRAM buffer. Such an architecture has the latency benefits of DRAM and the capacity benefits of PCM. Our evaluations for a baseline system of 16-cores with 8GB DRAM show that, on average, PCM can reduce page faults by 5X and provide a speedup of 3X. As PCM is projected to have limited write endurance, we also propose simple organizational and management solutions of the hybrid memory that reduces the write traffic to PCM, boosting its lifetime from 3 years to 9.7 years.

1,451 citations