scispace - formally typeset
Search or ask a question
Author

H. Levent Akin

Bio: H. Levent Akin is an academic researcher from Boğaziçi University. The author has contributed to research in topics: Robot & Monte Carlo localization. The author has an hindex of 15, co-authored 70 publications receiving 738 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An autonomous robotic exercise tutor for elderly people that learns a set of physical exercises from a human demonstrator in an imitation framework, and performs them in an exercise scenario, while monitoring the elderly person to provide verbal feedback is described.
Abstract: Ambient assisted living proposes to utilize technological solutions to sustain the well being of elderly people. In accordance with the vision of successful aging, we describe in this study an autonomous robotic exercise tutor for elderly people. The robot learns a set of physical exercises from a human demonstrator in an imitation framework, and performs these motions in an exercise scenario, while monitoring the elderly person to provide verbal feedback. We developed an exercise program in collaboration with a nursing home, and tested our system in a real world scenario with visitors of a day care center, over multiple sessions. We provide a detailed description of the system implementation, as well as our observations for the exercise program. For the study held in the day care center, video annotations and user self-assessments are evaluated to measure the overall performance of the system and to validate our approach. The analysis revealed that elderly people can successfully exercise with the assistance of the robot, while staying engaged with the system over multiple sessions.

75 citations

Journal ArticleDOI
TL;DR: This work presents an experience-based push-manipulation approach that enables the robot to acquire experimental models regarding how pushable real world objects with complex 3D structures move in response to various pushing actions and demonstrates the superiority of the achievable planning and execution concept through safe and successful push- manipulation of a variety of passively mobile pushable objects.
Abstract: In a realistic mobile push-manipulation scenario, it becomes non-trivial and infeasible to build analytical models that will capture the complexity of the interactions between the environment, each of the objects, and the robot as the variety of objects to be manipulated increases. We present an experience-based push-manipulation approach that enables the robot to acquire experimental models regarding how pushable real world objects with complex 3D structures move in response to various pushing actions. These experimentally acquired models can then be used either (1) for trying to track a collision-free guideline path generated for the object by reiterating pushing actions that result in the best locally-matching object trajectories until the goal is reached, or (2) as building blocks for constructing achievable push plans via a Rapidly-exploring Random Trees variant planning algorithm we contribute and executing them by reiterating the corresponding trajectories. We extensively experiment with these two methods in a 3D simulation environment and demonstrate the superiority of the achievable planning and execution concept through safe and successful push-manipulation of a variety of passively mobile pushable objects. Additionally, our preliminary tests in a real world scenario, where the robot is asked to arrange a set of chairs around a table through achievable push-manipulation, also show promising results despite the increased perception and action uncertainty, and verify the validity of our contributed method.

62 citations

Proceedings ArticleDOI
03 Jul 2013
TL;DR: This work provides a design for a BCI to control a humanoid robot by using signals obtained from the Emotiv EPOC, a portable electroencephalogram (EEG) device with 14 electrodes and sampling rate of 128 Hz.
Abstract: Brain Computer Interfaces (BCIs) are systems that allow human subjects to interact with the environment by interpreting brain signals into machine commands. This work provides a design for a BCI to control a humanoid robot by using signals obtained from the Emotiv EPOC [11], a portable electroencephalogram (EEG) device with 14 electrodes and sampling rate of 128 Hz. The main objective is to process the neuroelectric responses to an externally driven stimulus and generate control signals for the humanoid robot Nao accordingly. We analyze steady-state visually evoked potential (SSVEP) induced by one of four groups of light emitting diodes (LED) by using two distinct signals obtained from the two channels of the EEG device which reside on top of the occipital lobe. An embedded system is designed for generating pulse width modulated square wave signals in order to flicker each group of LEDs with different frequencies. The subject chooses the direction by looking at one of these groups of LEDs that represent four directions. Fast Fourier Transform and a Gaussian model are used to detect the dominant frequency component by utilizing harmonics and neighbor frequencies. Then, a control signal is sent to the robot in order to draw a fixed sized line in that selected direction by BCI. Experimental results display satisfactory performance where the correct target is detected 75% of the time on the average across all test subjects without any training.

57 citations

Journal ArticleDOI
TL;DR: This article provides an overview of these RoboCup Rescue Robot and Simulation competitions and highlights the state of the art and the lessons learned.
Abstract: The RoboCup Rescue Robot and Simulation competitions have been held since 2000. The experience gained during these competitions has increased the maturity level of the field, which allowed deploying robots after real disasters (for example, Fukushima Daiichi nuclear disaster). This article provides an overview of these competitions and highlights the state of the art and the lessons learned.

48 citations

Book ChapterDOI
03 Dec 2013
TL;DR: A robotic fitness coach that learns a set of physical exercises from a professional trainer, and assists elderly subjects in performing these gestures, and performs the learned gestures to the best of its abilities.
Abstract: The ultimate goal of ambient assisted living is to help elderly people live a healthy life in the convenience of their homes by making more intelligent technology bring them a set of required assistive tools. In this paper we describe a robotic fitness coach that learns a set of physical exercises from a professional trainer, and assists elderly subjects in performing these gestures. The gestures were selected from an actual training programme at an elderly care home. When demonstrating gestures, the robot performs the learned gestures to the best of its abilities, and while monitoring the elderly subject with an RGB-D camera, provides verbal guidance to complement the visual display, correcting gestures on the fly. We provide a detailed description of the training programme, the gesture acquisition, replication and evaluation algorithms, our solution to the robot stability problem, and a set of preliminary user tests to validate our approach.

47 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: In this paper, a taxonomy of recent contributions related to explainability of different machine learning models, including those aimed at explaining Deep Learning methods, is presented, and a second dedicated taxonomy is built and examined in detail.

2,827 citations

Posted Content
TL;DR: Previous efforts to define explainability in Machine Learning are summarized, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought, and a taxonomy of recent contributions related to the explainability of different Machine Learning models are proposed.
Abstract: In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explainability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI models. This overview examines the existing literature in the field of XAI, including a prospect toward what is yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.

1,602 citations

Journal ArticleDOI
21 Aug 2006
TL;DR: An introduction to market-based multirobot coordination is provided, a review and analysis of the state of the art in the field, and a discussion of remaining research challenges are discussed.
Abstract: Market-based multirobot coordination approaches have received significant attention and are growing in popularity within the robotics research community. They have been successfully implemented in a variety of domains ranging from mapping and exploration to robot soccer. The research literature on market-based approaches to coordination has now reached a critical mass that warrants a survey and analysis. This paper addresses this need for a survey of the relevant literature by providing an introduction to market-based multirobot coordination, a review and analysis of the state of the art in the field, and a discussion of remaining research challenges

896 citations

Journal Article
TL;DR: A new approach to visual navigation under changing conditions dubbed SeqSLAM, which removes the need for global matching performance by the vision front-end - instead it must only pick the best match within any short sequence of images.
Abstract: Learning and then recognizing a route, whether travelled during the day or at night, in clear or inclement weather, and in summer or winter is a challenging task for state of the art algorithms in computer vision and robotics. In this paper, we present a new approach to visual navigation under changing conditions dubbed SeqSLAM. Instead of calculating the single location most likely given a current image, our approach calculates the best candidate matching location within every local navigation sequence. Localization is then achieved by recognizing coherent sequences of these “local best matches”. This approach removes the need for global matching performance by the vision front-end - instead it must only pick the best match within any short sequence of images. The approach is applicable over environment changes that render traditional feature-based techniques ineffective. Using two car-mounted camera datasets we demonstrate the effectiveness of the algorithm and compare it to one of the most successful feature-based SLAM algorithms, FAB-MAP. The perceptual change in the datasets is extreme; repeated traverses through environments during the day and then in the middle of the night, at times separated by months or years and in opposite seasons, and in clear weather and extremely heavy rain. While the feature-based method fails, the sequence-based algorithm is able to match trajectory segments at 100% precision with recall rates of up to 60%.

686 citations