scispace - formally typeset
Search or ask a question
Author

H. Maruyama

Bio: H. Maruyama is an academic researcher from University of Perugia. The author has contributed to research in topics: Glucagon & Insulin. The author has an hindex of 4, co-authored 4 publications receiving 394 citations. Previous affiliations of H. Maruyama include University of Texas Southwestern Medical Center & University of Geneva.

Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that insulin maintains an ongoing restraint upon alpha cell secretion and in its absence causes hectic hypersecretion of glucagon, which probably occurs largely in the intravascular compartment.
Abstract: To determine if glucagon secretion is under physiological control of intra-islet insulin, pancreata from normal rats were perfused at a 100 mg/dl glucose concentration with either guinea pig antiinsulin serum or normal guinea pig serum in a nonrecirculating system. Perfusion of antiserum was followed within 3 min by a significant rise in glucagon that reached peak levels three times the base-line values and assumed a hectic pattern that returned rapidly to base-line levels upon termination of the antiserum perfusion. Nonimmune guinea pig serum had no effect. To gain insight into the probable site of insulin neutralization, 125I-labeled human gamma-globulin was added to antiserum or nonimmune serum and perfused for 3 min. More than 83% of the radioactivity was recovered in the effluent within 3 min after termination of the infusion, and only 0.05 +/- 0.015% of the radioactivity injected was present in the pancreas 10 min after the perfusion. The maximal amount of insulin that could be completely bound to insulin antibody at a dilution and under conditions simulating those of the perfusion experiments was 20 mU/min. It is concluded that insulin maintains an ongoing restraint upon alpha cell secretion and in its absence causes hectic hypersecretion of glucagon. This restraint probably occurs largely in the intravascular compartment. Loss of this release-inhibiting action of insulin may account for initiation of hyperglucagonemia in insulin-deficient states.

311 citations

Journal ArticleDOI
TL;DR: It is concluded that in the isolated rat pancreas adrenergic mediation accounts for most of the glucagon but not insulin response to glucopenia, and it is controlled within the Pancreas itself, possibly through a direct enhancement by gluc Openia of norepinephrine release from nerve endings.
Abstract: Alpha adrenergic blockade with phentolamine (10 microM) reduces the glucagon response to severe glucopenia (from 150 to 25 mg/dl) to 22% of the control values in the isolated perfused rat pancreas. Propranolol (10 microM) had no significant effect. Neither alpha nor beta adrenergic blockade reduced the magnitude of glucopenic suppression of insulin secretion, but phentolamine increased insulin levels before and during glucopenia. The pattern of somatostatin secretion in these experiments resembled that of insulin. Depletion of norepinephrine from sympathetic nerve endings by pretreatment with 6-hydroxydopamine lowered the pancreatic norepinephrine content to less than 20% of control values and reduced the glucagon response to glucopenia to 69% of the controls. Combined alpha and beta adrenergic blockade during less severe glucopenia (from 120 to 60 mg/dl) reduced the glucagon response to 21% of controls. However, slight glucopenia (from 100 to 80 mg/dl), which elicited only 11% increase in glucagon in the control experiments, was not altered significantly by combined alpha and beta adrenergic blockade. Morphologic studies of adrenergic nerve terminals labeled with [3H]norepinephrine revealed associations with alpha cells. It is concluded that in the isolated rat pancreas adrenergic mediation accounts for most of the glucagon but not insulin response to glucopenia. It is controlled within the pancreas itself, possibly through a direct enhancement by glucopenia of norepinephrine release from nerve endings.

52 citations

Journal ArticleDOI
TL;DR: It is suggested that insulin may be required for glucose-mediated suppression of glucagon in the isolated pancreas of normal rats but not for stimulation of glucagons secretion by mild glucopenia.
Abstract: To determine the effect of neutralization of endogenous insulin upon the glucagon response to a rise and fall of glucose concentration, pancreata isolated from normal rats were perfused with either a potent anti-pork insulin guinea pig serum or a nonimmune guinea pig serum for 30 min. During this period glucose concentration was changed from 100 mg/dl to either 130, 180 or 80 mg/dl for 10 min. Antiserum perfusion at 100 mg/dl caused an approximately two-fold increase in glucagon which was not suppressed by an increase in glucose concentration to either 130 or 180 mg/dl, although glucagon secretion was significantly suppressed in the control experiments in which nonimmune serum was perfused. However, the 0.38 +/- 0.21 ng/min rise in glucagon secretion in response to a reduction in glucose concentration to 80 mg/dl in the control experiments was not abolished by antiserum perfusion but, instead, was enhanced (2.66 +/- 0.60 ng/min). These findings suggest that insulin may be required for glucose-mediated suppression of glucagon in the isolated pancreas of normal rats but not for stimulation of glucagon secretion by mild glucopenia. Alternatively, neutralization of insulin-mediated release-inhibition of glucagon secretion may simply have altered alpha cell responsiveness in a direction that desensitized it nonspecifically to suppression and sensitized it to stimulation.

22 citations

Journal ArticleDOI
TL;DR: It is concluded that the decline in insulin from its normal concentrations within the islets makes a modest but significant contribution to the rise in glucagon that occurs during glucopenia.
Abstract: To determine if the loss of the glucagon response to glucopenia that follows destruction of beta cells is at least in part a consequence of the absence of the normal glucopenia-induced decline in insulin secretion, pancreata from insulin-requiring streptozotocin-diabetic rats were studied. In the absence of insulin, a reduction in perfusate glucose concentration from 150 to 25 mg/dl failed to elicit a rise in glucagon concentration. When insulin was co-perfused at 30 mU/ml, the estimated within-islet concentration of insulin under these circumstances, but discontinued during the glucopenic interval, reducing the insulin concentration in the pancreatic venous effluent from approximately 26 mU/ml to less than 100 microU/ml, a prompt and significant rise in glucagon was observed until glucose and insulin levels were raised to their original concentrations. The rise in glucagon, which was approximately 25% of the normal response, did not occur when insulin concentration in the perfusate was maintained at 30 mU/ml during the glucopenic period. Nor did it occur when insulin was perfused at 360 microU/ml and discontinued during the glucopenic period, thereby lowering insulin in the venous effluent from 300 microU/ml to 5 microU/ml. It is concluded that the decline in insulin from its normal concentrations within the islets makes a modest but significant contribution to the rise in glucagon that occurs during glucopenia.

15 citations


Cited by
More filters
Journal ArticleDOI
10 Aug 2007-Cell
TL;DR: It is shown that mice lacking the protein tyrosine phosphatase OST-PTP are hypoglycemic and are protected from obesity and glucose intolerance because of an increase in beta-cell proliferation, insulin secretion, and insulin sensitivity, and in vivo osteocalcin can improve glucose tolerance.

2,250 citations

Journal ArticleDOI
TL;DR: This work aims to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response.
Abstract: The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have ma...

1,268 citations

Journal ArticleDOI
TL;DR: In patients with type 2 diabetes, empagliflozin-induced glycosuria improved β cell function and insulin sensitivity, despite the fall in insulin secretion and tissue glucose disposal and the rise in EGP after one dose, thereby lowering fasting and postprandial glycemia.
Abstract: Background. Sodium-glucose cotransporter 2 (SGLT2) inhibitors lower glycemia by enhancing urinary glucose excretion. The physiologic response to pharmacologically induced acute or chronic glycosuria has not been investigated in human diabetes. Methods. We evaluated 66 patients with type 2 diabetes (62 ± 7 years, BMI = 31.6 ± 4.6 kg/m2, HbA1c = 55 ± 8 mmol/mol, mean ± SD) at baseline, after a single dose, and following 4-week treatment with empagliflozin (25 mg). At each time point, patients received a mixed meal coupled with dual-tracer glucose administration and indirect calorimetry. Results. Both single-dose and chronic empagliflozin treatment caused glycosuria during fasting (median, 7.8 [interquartile range {IQR}, 4.4] g/3 hours and 9.2 [IQR, 5.2] g/3 hours) and after meal ingestion (median, 29.0 [IQR, 12.5] g/5 hours and 28.2 [IQR, 15.4] g/5 hours). After 3 hours of fasting, endogenous glucose production (EGP) was increased 25%, while glycemia was 0.9 ± 0.7 mmol/l lower (P < 0.0001 vs. baseline). After meal ingestion, glucose and insulin AUC decreased, whereas the glucagon response increased (all P < 0.001). While oral glucose appearance was unchanged, EGP was increased (median, 40 [IQR, 14] g and 37 [IQR, 11] g vs. 34 [IQR, 11] g, both P < 0.01). Tissue glucose disposal was reduced (median, 75 [IQR, 16] g and 70 [IQR, 21] g vs. 93 [IQR, 18] g, P < 0.0001), due to a decrease in both glucose oxidation and nonoxidative glucose disposal, with a concomitant rise in lipid oxidation after chronic administration (all P < 0.01). β Cell glucose sensitivity increased (median, 55 [IQR, 35] pmol•min–1•m–2•mM–1 and 55 [IQR, 39] pmol•min–1•m–2•mM–1 vs. 44 [IQR, 32] pmol•min–1•m–2•mM–1, P < 0.0001), and insulin sensitivity was improved. Resting energy expenditure rates and those after meal ingestion were unchanged. Conclusions. In patients with type 2 diabetes, empagliflozin-induced glycosuria improved β cell function and insulin sensitivity, despite the fall in insulin secretion and tissue glucose disposal and the rise in EGP after one dose, thereby lowering fasting and postprandial glycemia. Chronic dosing shifted substrate utilization from carbohydrate to lipid. Trial registration. ClinicalTrials.Gov {"type":"clinical-trial","attrs":{"text":"NCT01248364","term_id":"NCT01248364"}}NCT01248364 (EudraCT no. 2010-018708-99). Funding. This study was funded by Boehringer Ingelheim.

862 citations

Journal ArticleDOI
TL;DR: A role for hyperlipacidemia in the pathogenesis of NIDDM is suggested; resistance to insulin-mediated antilipolysis is invoked to explain the high FFA despite hyperinsulinemia, and sensitivity of beta cells to hyperlipacedemia is invokedto explain the FFA-induced loss of GSIS.
Abstract: Hyperinsulinemia, loss of glucose-stimulated insulin secretion (GSIS), and peripheral insulin resistance coexist in non-insulin-dependent diabetes mellitus (NIDDM). Because free fatty acids (FFA) can induce these same abnormalities, we studied their role in the pathogenesis of the NIDDM of obese Zucker diabetic fatty (ZDF-drt) rats from 5 weeks of age (before the onset of hyperglycemia) until 14 weeks. Two weeks prior to hyperglycemia, plasma FFA began to rise progressively, averaging 1.9 +/- 0.06 mM at the onset of hyperglycemia (P < 0.001 vs. controls). At this time GSIS was absent and beta-cell GLUT-2 glucose transporter was decreased. The triacylglycerol content of prediabetic islets rose to 10 times that of controls and was correlated with plasma FFA (r = 0.825; P < 0.001), which, in turn, was correlated with the plasma glucose concentration (r = 0.873; P < 0.001). Reduction of hyperlipacidemia to 1.3 +/- 0.07 mM by pair feeding with lean littermates reduced all beta-cell abnormalities and prevented hyperglycemia. Normal rat islets that had been cultured for 7 days in medium containing 2 mM FFA exhibited increased basal insulin secretion at 3 mM glucose, and first-phase GSIS was reduced by 68%; in prediabetic islets, first-phase GSIS was reduced by 69% by FFA. The results suggest a role for hyperlipacidemia in the pathogenesis of NIDDM; resistance to insulin-mediated antilipolysis is invoked to explain the high FFA despite hyperinsulinemia, and sensitivity of beta cells to hyperlipacedemia is invoked to explain the FFA-induced loss of GSIS.

806 citations

Journal ArticleDOI
TL;DR: It is concluded that glucose-responsive β cells normally regulate juxtaposed α cells and that without intraislet insulin, unregulated α cells hypersecrete glucagon, which directly causes the symptoms of diabetes, indicating that glucagon suppression or inactivation may provide therapeutic advantages over insulin monotherapy.
Abstract: The hormone glucagon has long been dismissed as a minor contributor to metabolic disease. Here we propose that glucagon excess, rather than insulin deficiency, is the sine qua non of diabetes. We base this on the following evidence: (a) glucagon increases hepatic glucose and ketone production, catabolic features present in insulin deficiency; (b) hyperglucagonemia is present in every form of poorly controlled diabetes; (c) the glucagon suppressors leptin and somatostatin suppress all catabolic manifestations of diabetes during total insulin deficiency; (d) total β cell destruction in glucagon receptor–null mice does not cause diabetes; and (e) perfusion of normal pancreas with anti-insulin serum causes marked hyperglucagonemia. From this and other evidence, we conclude that glucose-responsive β cells normally regulate juxtaposed α cells and that without intraislet insulin, unregulated α cells hypersecrete glucagon, which directly causes the symptoms of diabetes. This indicates that glucagon suppression or inactivation may provide therapeutic advantages over insulin monotherapy.

607 citations