scispace - formally typeset
Search or ask a question
Author

H.O. Klages

Bio: H.O. Klages is an academic researcher from Karlsruhe Institute of Technology. The author has contributed to research in topics: Cosmic ray & KASCADE. The author has an hindex of 57, co-authored 346 publications receiving 12759 citations.


Papers
More filters
Journal ArticleDOI
J. Abraham1, P. Abreu2, Marco Aglietta3, C. Aguirre  +449 moreInstitutions (69)
09 Nov 2007-Science
TL;DR: In this article, the authors demonstrate that there is a correlation between the arrival directions of cosmic rays with energy above 6 x 10{sup 19} eV and the positions of active galactic nuclei lying within 75 Mpc.
Abstract: Using data collected at the Pierre Auger Observatory during the past 3.7 years, we demonstrate that there is a correlation between the arrival directions of cosmic rays with energy above {approx} 6 x 10{sup 19} eV and the positions of active galactic nuclei (AGN) lying within {approx} 75 Mpc. We reject the hypothesis of an isotropic distribution of these cosmic rays at over 99% confidence level from a prescribed a priori test. The correlation we observe is compatible with the hypothesis that the highest energy particles originate from nearby extragalactic sources whose flux has not been significantly reduced by interaction with the cosmic background radiation. AGN or objects having a similar spatial distribution are possible sources.

798 citations

Journal ArticleDOI
J. Abraham, P. Abreu1, Marco Aglietta2, C. Aguirre  +485 moreInstitutions (74)
TL;DR: The energy spectrum of cosmic rays above 2.5 x 10;{18} eV, derived from 20,000 events recorded at the Pierre Auger Observatory, is described and the hypothesis of a single power law is rejected with a significance greater than 6 standard deviations.
Abstract: The energy spectrum of cosmic rays above 2.5 x 10;{18} eV, derived from 20,000 events recorded at the Pierre Auger Observatory, is described. The spectral index gamma of the particle flux, J proportional, variantE;{-gamma}, at energies between 4 x 10;{18} eV and 4 x 10;{19} eV is 2.69+/-0.02(stat)+/-0.06(syst), steepening to 4.2+/-0.4(stat)+/-0.06(syst) at higher energies. The hypothesis of a single power law is rejected with a significance greater than 6 standard deviations. The data are consistent with the prediction by Greisen and by Zatsepin and Kuz'min.

648 citations

Journal ArticleDOI
A. Aab1, P. Abreu2, Marco Aglietta3, Marco Aglietta4  +640 moreInstitutions (64)
TL;DR: The Pierre Auger Observatory as mentioned in this paper, the world's largest cosmic ray observatory, has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km$^2$ sr yr.
Abstract: The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above $10^{17}$ eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water-Cherenkov particle detector stations spread over 3000 km$^2$ overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km$^2$, 61 detector infill array. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km$^2$ sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Auger Observatory.

615 citations

Journal ArticleDOI
TL;DR: In this paper, a composition analysis of KASCADE air shower data is performed by means of unfolding the two-dimensional frequency spectrum of electron and muon numbers, and the analysis is the determination of energy spectra for elemental groups representing the chemical composition of primary cosmic rays.

526 citations

Journal ArticleDOI
J. Abraham1, P. Abreu2, Marco Aglietta3, Eun-Joo Ahn4  +489 moreInstitutions (65)
TL;DR: In this article, the authors reported a measurement of the flux of cosmic rays with unprecedented precision and statistics using the Pierre Auger Observatory based on fluorescence observations in coincidence with at least one surface detector.

461 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: A binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors.
Abstract: On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of $\sim 1.7\,{\rm{s}}$ with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of ${40}_{-8}^{+8}$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 $\,{M}_{\odot }$. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $\sim 40\,{\rm{Mpc}}$) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position $\sim 9$ and $\sim 16$ days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.

2,746 citations

Journal ArticleDOI
TL;DR: In this paper, an improved determination of the Hubble constant (H0) from HST observations of 70 long-period Cepheids in the Large Magellanic Cloud was presented.
Abstract: We present an improved determination of the Hubble constant (H0) from Hubble Space Telescope (HST) observations of 70 long-period Cepheids in the Large Magellanic Cloud. These were obtained with the same WFC3 photometric system used to measure Cepheids in the hosts of Type Ia supernovae. Gyroscopic control of HST was employed to reduce overheads while collecting a large sample of widely-separated Cepheids. The Cepheid Period-Luminosity relation provides a zeropoint-free link with 0.4% precision between the new 1.2% geometric distance to the LMC from Detached Eclipsing Binaries (DEBs) measured by Pietrzynski et al (2019) and the luminosity of SNe Ia. Measurements and analysis of the LMC Cepheids were completed prior to knowledge of the new LMC distance. Combined with a refined calibration of the count-rate linearity of WFC3-IR with 0.1% precision (Riess et al 2019), these three improved elements together reduce the full uncertainty in the LMC geometric calibration of the Cepheid distance ladder from 2.5% to 1.3%. Using only the LMC DEBs to calibrate the ladder we find H0=74.22 +/- 1.82 km/s/Mpc including systematic uncertainties, 3% higher than before for this particular anchor. Combining the LMC DEBs, masers in NGC 4258 and Milky Way parallaxes yields our best estimate: H0 = 74.03 +/- 1.42 km/s/Mpc, including systematics, an uncertainty of 1.91%---15% lower than our best previous result. Removing any one of these anchors changes H0 by < 0.7%. The difference between H0 measured locally and the value inferred from Planck CMB+LCDM is 6.6+/-1.5 km/s/Mpc or 4.4 sigma (P=99.999% for Gaussian errors) in significance, raising the discrepancy beyond a plausible level of chance. We summarize independent tests which show this discrepancy is not readily attributable to an error in any one source or measurement, increasing the odds that it results from a cosmological feature beyond LambdaCDM.

1,924 citations

Journal ArticleDOI
TL;DR: In this paper, an improved determination of the Hubble constant (H0) from HST observations of 70 long-period Cepheids in the Large Magellanic Cloud was presented.
Abstract: We present an improved determination of the Hubble constant (H0) from Hubble Space Telescope (HST) observations of 70 long-period Cepheids in the Large Magellanic Cloud. These were obtained with the same WFC3 photometric system used to measure Cepheids in the hosts of Type Ia supernovae. Gyroscopic control of HST was employed to reduce overheads while collecting a large sample of widely-separated Cepheids. The Cepheid Period-Luminosity relation provides a zeropoint-free link with 0.4% precision between the new 1.2% geometric distance to the LMC from Detached Eclipsing Binaries (DEBs) measured by Pietrzynski et al (2019) and the luminosity of SNe Ia. Measurements and analysis of the LMC Cepheids were completed prior to knowledge of the new LMC distance. Combined with a refined calibration of the count-rate linearity of WFC3-IR with 0.1% precision (Riess et al 2019), these three improved elements together reduce the full uncertainty in the LMC geometric calibration of the Cepheid distance ladder from 2.5% to 1.3%. Using only the LMC DEBs to calibrate the ladder we find H0=74.22 +/- 1.82 km/s/Mpc including systematic uncertainties, 3% higher than before for this particular anchor. Combining the LMC DEBs, masers in NGC 4258 and Milky Way parallaxes yields our best estimate: H0 = 74.03 +/- 1.42 km/s/Mpc, including systematics, an uncertainty of 1.91%---15% lower than our best previous result. Removing any one of these anchors changes H0 by < 0.7%. The difference between H0 measured locally and the value inferred from Planck CMB+LCDM is 6.6+/-1.5 km/s/Mpc or 4.4 sigma (P=99.999% for Gaussian errors) in significance, raising the discrepancy beyond a plausible level of chance. We summarize independent tests which show this discrepancy is not readily attributable to an error in any one source or measurement, increasing the odds that it results from a cosmological feature beyond LambdaCDM.

1,366 citations