scispace - formally typeset
Search or ask a question
Author

H. R. Krouse

Bio: H. R. Krouse is an academic researcher from University of Calgary. The author has contributed to research in topics: Sea ice & Sea ice thickness. The author has an hindex of 3, co-authored 3 publications receiving 482 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors found that the seasonal evolution of first-year and multi-year ice permeability and surface morphology determine four distinct stages of melt, starting at the start of the ablation season (stage 1), ponding is widespread and lateral melt flow dominates.
Abstract: [1] At the Surface Heat Budget of the Arctic Ocean (SHEBA) program's field site in the northern Chukchi Sea, snow and ice meltwater flow was found to have a strong impact on the heat and mass balance of sea ice during the summer of 1998. Pathways and rates of meltwater transport were derived from tracer studies (H218O, 7Be, and release of fluorescent dyes), complemented by in situ sea-ice permeability measurements. It was shown that the balance between meltwater supply at the surface (averaging between 3.5 and 10.5 mm d−1) and ice permeability (between 10−9 m2) determines the retention and pooling of meltwater, which in turn controls ice albedo. We found that the seasonal evolution of first-year and multiyear ice permeability and surface morphology determine four distinct stages of melt. At the start of the ablation season (stage 1), ponding is widespread and lateral melt flow dominates. Several tens of cubic meters of meltwater per day were found to drain hundreds to thousands of square meters of ice through flaws and permeable zones. Significant formation of underwater ice, composed between 50% of meteoric water, formed at these drainage sites. Complete removal of snow cover, increase in ice permeability, and reductions in hydraulic gradients driving fluid flow mark stage 2, concurrent with a reduction in pond coverage and albedo. During stage 3, maximum permeabilities were measured, with surface meltwater penetrating to 1 m depth in the ice and convective overturning and desalination found to dominate the lower layers of first-year and thin multiyear ice. Enhanced fluid flow into flaws and permeable zones was observed to promote ice floe breakup and disintegration, concurrent with increases in pond salinities and 7Be. Advective heat flows of several tens of watts per square meter were derived, promoting widening of ponds and increases in pond coverage. Stage 4 corresponds to freeze-up. Roughly 40% of the total surface melt was retained by the ice cover within the ice matrix as well as in surface and under-ice ponds (with a total net retention of 15%). Based on this work, areas of improvement for fully prognostic simulations of ice albedo are identified, calling for parameterizations of sea-ice permeability and the integration of ice topography and refined ablation schemes into atmosphere-ice-ocean models.

249 citations

Journal Article
TL;DR: In this paper, the authors found that the seasonal evolution of first-year and multi-year ice permeability and surface morphology determine four distinct stages of melt, starting at the start of the ablation season (stage 1), ponding is widespread and lateral melt flow dominates.
Abstract: [i] At the Surface Heat Budget of the Arctic Ocean (SHEBA) program's field site in the northern Chukchi Sea, snow and ice meltwater flow was found to have a strong impact on the heat and mass balance of sea ice during the summer of 1998. Pathways and rates of meltwater transport were derived from tracer studies (H 2 18 O, 7 Be, and release of fluorescent dyes), complemented by in situ sea-ice permeability measurements. It was shown that the balance between meltwater supply at the surface (averaging between 3.5 and 10.5 mm d -1 ) and ice permeability (between 10 -9 m 2 ) determines the retention and pooling of meltwater, which in turn controls ice albedo. We found that the seasonal evolution of first-year and multiyear ice permeability and surface morphology determine four distinct stages of melt. At the start of the ablation season (stage 1), ponding is widespread and lateral melt flow dominates. Several tens of cubic meters of meltwater per day were found to drain hundreds to thousands of square meters of ice through flaws and permeable zones. Significant formation of underwater ice, composed between 50% of meteoric water, formed at these drainage sites. Complete removal of snow cover, increase in ice permeability, and reductions in hydraulic gradients driving fluid flow mark stage 2, concurrent with a reduction in pond coverage and albedo. During stage 3, maximum permeabilities were measured, with surface meltwater penetrating to 1 m depth in the ice and convective overturning and desalination found to dominate the lower layers of first-year and thin multiyear ice. Enhanced fluid flow into flaws and permeable zones was observed to promote ice floe breakup and disintegration, concurrent with increases in pond salinities and 7 Be. Advective heat flows of several tens of watts per square meter were derived, promoting widening of ponds and increases in pond coverage. Stage 4 corresponds to freeze-up. Roughly 40% of the total surface melt was retained by the ice cover within the ice matrix as well as in surface and under-ice ponds (with a total net retention of 15%). Based on this work, areas of improvement for fully prognostic simulations of ice albedo are identified, calling for parameterizations of sea-ice permeability and the integration of ice topography and refined ablation schemes into atmosphere-ice-ocean models.

214 citations

Journal ArticleDOI
TL;DR: In this article, the morphological properties, growth processes, and internal permeability of sea ice in the Marguerite Bay area of the Western Antarctic Peninsula were investigated during the winter 2001 and 2002 cruises of the SO-GLOBEC experiment.
Abstract: During the winter 2001 and 2002 cruises of the SO-GLOBEC experiment, we investigated the morphological properties, growth processes, and internal permeability of sea ice in the Marguerite Bay area of the Western Antarctic Peninsula. There was considerable interannual variability in ice thickness with, average values of 62 cm in 2001 and 102 cm in 2002, with medians of 43 and 68 cm, respectively. Snow depth averaged 16 cm in 2001 and 21 cm in 2002. At 40% of the thickness holes in 2001 and 17% in 2002, a combination of deep snow and thin ice resulted in negative freeboard and the potential for surface flooding. Ice production was strongly influenced by the snow cover. Deep snow resulted in negative freeboard, surface flooding, and the formation of snow–ice, but also limited columnar ice growth on the bottom of the ice. A stratigraphic analysis of ice thin sections showed that more than half of the ice sampled was granular and that virtually all of the upper 20 cm of the ice cover was granular. Stable isotope (δ 18 O) analysis of samples from 2001 indicated that snow–ice formation at the surface contributed significantly to ice formation. Two-thirds of the cores had some snow–ice and 15% of the ice sampled in 2001 was snow–ice. For 95% of the ice sampled the combination of warm ice temperatures and large salinities resulted in brine volumes that were greater than the percolation threshold of 5%. Autonomous mass balance buoys indicated that the ice was above the percolation threshold throughout late winter and spring. The exceeding of the percolation threshold allows continuous flooding to occur throughout the late winter–spring period. The WAP sea-ice therefore represents a warm “end-member” of the sea-ice covers of Antarctica. An expected consequence of the lengthy flooding condition at the snow/ice interface is an earlier onset of an algal bloom in the flooded snow than elsewhere in Antarctic sea ice.

43 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the physical properties (microstructure, thickness, salinity, porosity, and density) and the mechanical properties (tensile, flexural, shear, uni-axial compression and multiaxial compression strength, borehole strength, failure envelope, creep, elastic and strain modulus, Poisson's ratio, fracture toughness and friction) are explored.

492 citations

Journal ArticleDOI
TL;DR: In this article, the spectral and wavelength-integrated albedo on multi-year sea ice was measured every 2.5 m along a 200m survey line from April through October.
Abstract: [1] As part of ice albedo feedback studies during the Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment, we measured spectral and wavelength-integrated albedo on multiyear sea ice. Measurements were made every 2.5 m along a 200-m survey line from April through October. Initially, this line was completely snow covered, but as the melt season progressed, it became a mixture of bare ice and melt ponds. Observed changes in albedo were a combination of a gradual evolution due to seasonal transitions and abrupt shifts resulting from synoptic weather events. There were five distinct phases in the evolution of albedo: dry snow, melting snow, pond formation, pond evolution, and fall freeze-up. In April the surface albedo was high (0.8–0.9) and spatially uniform. By the end of July the average albedo along the line was 0.4, and there was significant spatial variability, with values ranging from 0.1 for deep, dark ponds to 0.65 for bare, white ice. There was good agreement between surface-based albedos and measurements made from the University of Washington's Convair-580 research aircraft. A comparison between net solar irradiance computed using observed albedos and a simplified model of seasonal evolution shows good agreement as long as the timing of the transitions is accurately determined.

444 citations

Journal Article
TL;DR: In this paper, the authors measured spectral and wavelength-integrated albedo on multi-year sea ice from a 200m survey line from April through October and observed changes in the evolution of albedos.
Abstract: [1] As part of ice albedo feedback studies during the Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment, we measured spectral and wavelength-integrated albedo on multiyear sea ice. Measurements were made every 2.5 m along a 200-m survey line from April through October. Initially, this line was completely snow covered, but as the melt season progressed, it became a mixture of bare ice and melt ponds. Observed changes in albedo were a combination of a gradual evolution due to seasonal transitions and abrupt shifts resulting from synoptic weather events. There were five distinct phases in the evolution of albedo: dry snow, melting snow, pond formation, pond evolution, and fall freeze-up. In April the surface albedo was high (0.8-0.9) and spatially uniform. By the end of July the average albedo along the line was 0.4, and there was significant spatial variability, with values ranging from 0.1 for deep, dark ponds to 0.65 for bare, white ice. There was good agreement between surface-based albedos and measurements made from the University of Washington's Convair-580 research aircraft. A comparison between net solar irradiance computed using observed albedos and a simplified model of seasonal evolution shows good agreement as long as the timing of the transitions is accurately determined.

422 citations

Journal ArticleDOI
TL;DR: The Community Climate System Model, version 4 has revisions across all components and the most notable improvements are the incorporation of a new shortwave radiative transfer scheme and the capabilities that this enables.
Abstract: The Community Climate System Model, version 4 has revisions across all components. For sea ice, the most notable improvements are the incorporation of a new shortwave radiative transfer scheme and the capabilities that this enables. This scheme uses inherent optical properties to define scattering and absorption characteristics of snow, ice, and included shortwave absorbers and explicitly allows for melt ponds and aerosols. The deposition and cycling of aerosols in sea ice is now included, and a new parameterization derives ponded water from the surface meltwater flux. Taken together, this provides a more sophisticated, accurate, and complete treatment of sea ice radiative transfer. In preindustrial CO2 simulations, the radiative impact of ponds and aerosols on Arctic sea ice is 1.1 W m−2 annually, with aerosols accounting for up to 8 W m−2 of enhanced June shortwave absorption in the Barents and Kara Seas and with ponds accounting for over 10 W m−2 in shelf regions in July. In double CO2 (2XCO2) ...

320 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the first large-scale under-ice light measurements, operating spectral radiometers on a remotely operated vehicle (ROV) under Arctic sea ice in summer.
Abstract: [1] Arctic sea ice has declined and become thinner and younger (more seasonal) during the last decade. One consequence of this is that the surface energy budget of the Arctic Ocean is changing. While the role of surface albedo has been studied intensively, it is still widely unknown how much light penetrates through sea ice into the upper ocean, affecting sea-ice mass balance, ecosystems, and geochemical processes. Here we present the first large-scale under-ice light measurements, operating spectral radiometers on a remotely operated vehicle (ROV) under Arctic sea ice in summer. This data set is used to produce an Arctic-wide map of light distribution under summer sea ice. Our results show that transmittance through first-year ice (FYI, 0.11) was almost three times larger than through multi-year ice (MYI, 0.04), and that this is mostly caused by the larger melt-pond coverage of FYI (42 vs. 23%). Also energy absorption was 50% larger in FYI than in MYI. Thus, a continuation of the observed sea-ice changes will increase the amount of light penetrating into the Arctic Ocean, enhancing sea-ice melt and affecting sea-ice and upper-ocean ecosystems.

295 citations