scispace - formally typeset
Search or ask a question
Author

H. Rehbein

Other affiliations: Leibniz University of Hanover
Bio: H. Rehbein is an academic researcher from Max Planck Society. The author has contributed to research in topics: Gravitational wave & LIGO. The author has an hindex of 18, co-authored 30 publications receiving 2838 citations. Previous affiliations of H. Rehbein include Leibniz University of Hanover.

Papers
More filters
Journal ArticleDOI
M. Punturo, M. R. Abernathy1, Fausto Acernese2, Benjamin William Allen3, Nils Andersson4, K. G. Arun5, Fabrizio Barone2, B. Barr1, M. Barsuglia6, M. G. Beker7, N. Beveridge1, S. Birindelli8, Suvadeep Bose9, L. Bosi, S. Braccini, C. Bradaschia, Tomasz Bulik10, Enrico Calloni, G. Cella, E. Chassande Mottin6, Simon Chelkowski11, Andrea Chincarini, John A. Clark12, E. Coccia13, C. N. Colacino, J. Colas, A. Cumming1, L. Cunningham1, E. Cuoco, S. L. Danilishin14, Karsten Danzmann3, G. De Luca, R. De Salvo15, T. Dent12, R. De Rosa, L. Di Fiore, A. Di Virgilio, M. Doets7, V. Fafone13, Paolo Falferi16, R. Flaminio17, J. Franc17, F. Frasconi, Andreas Freise11, Paul Fulda11, Jonathan R. Gair18, G. Gemme, A. Gennai11, A. Giazotto, Kostas Glampedakis19, M. Granata6, Hartmut Grote3, G. M. Guidi20, G. D. Hammond1, Mark Hannam21, Jan Harms22, D. Heinert23, Martin Hendry1, Ik Siong Heng1, Eric Hennes7, Stefan Hild1, J. H. Hough, Sascha Husa24, S. H. Huttner1, Gareth Jones12, F. Y. Khalili14, Keiko Kokeyama11, Kostas D. Kokkotas19, Badri Krishnan24, M. Lorenzini, Harald Lück3, Ettore Majorana, Ilya Mandel25, Vuk Mandic22, I. W. Martin1, C. Michel17, Y. Minenkov13, N. Morgado17, Simona Mosca, B. Mours26, H. Müller–Ebhardt3, P. G. Murray1, Ronny Nawrodt1, John Nelson1, Richard O'Shaughnessy27, Christian D. Ott15, C. Palomba, A. Paoli, G. Parguez, A. Pasqualetti, R. Passaquieti28, D. Passuello, L. Pinard17, Rosa Poggiani28, P. Popolizio, Mirko Prato, P. Puppo, D. S. Rabeling7, P. Rapagnani29, Jocelyn Read24, Tania Regimbau8, H. Rehbein3, Stuart Reid1, Luciano Rezzolla24, F. Ricci29, F. Richard, A. Rocchi, Sheila Rowan1, Albrecht Rüdiger3, Benoit Sassolas17, Bangalore Suryanarayana Sathyaprakash12, Roman Schnabel3, C. Schwarz, Paul Seidel, Alicia M. Sintes24, Kentaro Somiya15, Fiona C. Speirits1, Kenneth A. Strain1, S. E. Strigin14, P. J. Sutton12, S. P. Tarabrin14, Andre Thüring3, J. F. J. van den Brand7, C. van Leewen7, M. van Veggel1, C. Van Den Broeck12, Alberto Vecchio11, John Veitch11, F. Vetrano20, A. Viceré20, Sergey P. Vyatchanin14, Benno Willke3, Graham Woan1, P. Wolfango30, Kazuhiro Yamamoto3 
TL;DR: The third-generation ground-based observatory Einstein Telescope (ET) project as discussed by the authors is currently in its design study phase, and it can be seen as the first step in this direction.
Abstract: Advanced gravitational wave interferometers, currently under realization, will soon permit the detection of gravitational waves from astronomical sources. To open the era of precision gravitational wave astronomy, a further substantial improvement in sensitivity is required. The future space-based Laser Interferometer Space Antenna and the third-generation ground-based observatory Einstein Telescope (ET) promise to achieve the required sensitivity improvements in frequency ranges. The vastly improved sensitivity of the third generation of gravitational wave observatories could permit detailed measurements of the sources' physical parameters and could complement, in a multi-messenger approach, the observation of signals emitted by cosmological sources obtained through other kinds of telescopes. This paper describes the progress of the ET project which is currently in its design study phase.

1,497 citations

Journal ArticleDOI
TL;DR: A stable optical trap suitable for a macroscopic mirror, wherein the dynamics of the mirror are fully dominated by radiation pressure, is reported, and it is shown how these forces may be used to optically trap a free mass without introducing thermal noise.
Abstract: We report on a stable optical trap suitable for a macroscopic mirror, wherein the dynamics of the mirror are fully dominated by radiation pressure. The technique employs two frequency-offset laser fields to simultaneously create a stiff optical restoring force and a viscous optical damping force. We show how these forces may be used to optically trap a free mass without introducing thermal noise, and we demonstrate the technique experimentally with a 1 g mirror. The observed optical spring has an inferred Young's modulus of 1.2 TPa, 20% stiffer than diamond. The trap is intrinsically cold and reaches an effective temperature of 0.8 K, limited by technical noise in our apparatus.

341 citations

Journal ArticleDOI
M. Punturo, M. R. Abernathy1, Fausto Acernese2, Benjamin William Allen3, Nils Andersson4, K. G. Arun5, Fabrizio Barone2, B. Barr1, M. Barsuglia, M. G. Beker6, N. Beveridge1, S. Birindelli7, Suvadeep Bose8, L. Bosi, S. Braccini, C. Bradaschia, Tomasz Bulik9, Enrico Calloni, G. Cella, E. Chassande Mottin, Simon Chelkowski10, Andrea Chincarini, John A. Clark11, E. Coccia12, C. N. Colacino, J. Colas, A. Cumming1, L. Cunningham1, E. Cuoco, S. L. Danilishin13, Karsten Danzmann3, G. De Luca, R. De Salvo14, T. Dent11, R. T. DeRosa, L. Di Fiore, A. Di Virgilio, M. Doets6, V. Fafone12, Paolo Falferi15, R. Flaminio16, J. Franc16, F. Frasconi, Andreas Freise10, Paul Fulda10, Jonathan R. Gair17, G. Gemme, A. Gennai10, A. Giazotto, Kostas Glampedakis18, M. Granata, Hartmut Grote3, G. M. Guidi19, G. D. Hammond1, Mark Hannam20, Jan Harms21, D. Heinert22, Martin Hendry1, Ik Siong Heng1, Eric Hennes6, Stefan Hild3, J. H. Hough, Sascha Husa3, S. H. Huttner1, Gareth Jones11, F. Y. Khalili13, Keiko Kokeyama10, Kostas D. Kokkotas18, Badri Krishnan3, M. Lorenzini, Harald Lück3, Ettore Majorana, Ilya Mandel23, Vuk Mandic21, I. W. Martin1, C. Michel16, Y. Minenkov12, N. Morgado16, Simona Mosca, B. Mours24, Helge Müller-Ebhardt3, P. G. Murray1, Ronny Nawrodt1, John Nelson1, Richard O'Shaughnessy25, Christian D. Ott14, C. Palomba, A. Paoli, G. Parguez, A. Pasqualetti, R. Passaquieti26, D. Passuello, L. Pinard16, Rosa Poggiani26, P. Popolizio, Mirko Prato, P. Puppo, D. S. Rabeling6, P. Rapagnani27, Jocelyn Read3, Tania Regimbau7, H. Rehbein3, Stuart Reid1, Luciano Rezzolla3, F. Ricci27, F. Richard, A. Rocchi, Sheila Rowan1, Albrecht Rüdiger3, Benoit Sassolas16, Bangalore Suryanarayana Sathyaprakash11, Roman Schnabel3, C. Schwarz28, Paul Seidel28, Alicia M. Sintes3, Kentaro Somiya3, Fiona C. Speirits1, Kenneth A. Strain3, S. E. Strigin13, P. J. Sutton11, S. P. Tarabrin13, J. F. J. van den Brand6, C. van Leewen6, M. van Veggel1, C. Van Den Broeck11, Alberto Vecchio10, John Veitch10, F. Vetrano19, A. Viceré19, Sergey P. Vyatchanin13, Benno Willke3, Graham Woan1, P. Wolfango29, Kazuhiro Yamamoto3 
TL;DR: The status of the project Einstein Telescope (ET), a design study of a third-generation gravitational wave observatory, is reported in this paper, where an overview of the possible science reaches and the technological progress needed to realize a third generation observatory are discussed.
Abstract: Large gravitational wave interferometric detectors, like Virgo and LIGO, demonstrated the capability to reach their design sensitivity, but to transform these machines into an effective observational instrument for gravitational wave astronomy a large improvement in sensitivity is required. Advanced detectors in the near future and third-generation observatories in more than one decade will open the possibility to perform gravitational wave astronomical observations from the Earth. An overview of the possible science reaches and the technological progress needed to realize a third-generation observatory are discussed in this paper. The status of the project Einstein Telescope (ET), a design study of a third-generation gravitational wave observatory, will be reported.

319 citations

20 May 2011
TL;DR: In this article, the conceptual design of a third generation gravitational wave observatory named the Einstein Telescope (ET) has been described with the support of the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n 211743.
Abstract: This document describes the Conceptual Design of a third generation gravitational wave observatory named Einstein Telescope (“ET”). The design of this new research infrastructure has been realised with the support of the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n 211743. In this document are described the fundamental design options, the site requirements, the main technological solutions, a rough evaluation of the costs and a schematic time plan.

192 citations

Journal ArticleDOI
Benno Willke1, P. Ajith1, Benjamin William Allen1, Peter Aufmuth1, C. Aulbert1, S. Babak1, R. Balasubramanian2, B. Barr1, S. Berukoff1, A. Bunkowski1, Gianpietro Cagnoli3, C. A. Cantley3, Morag M. Casey3, Simon Chelkowski1, Yi Chen1, D. Churches2, Thomas Cokelaer2, C. N. Colacino4, David Crooks3, Curt Cutler1, Karsten Danzmann1, R. J. Dupuis3, E. J. Elliffe3, Carsten Fallnich, Alexander Franzen1, Andreas Freise1, I. Gholami1, Stefan Goßler1, A. Grant3, Hartmut Grote1, S. Grunewald1, Jan Harms1, Boris Hage1, Gerhard Heinzel1, Ik Siong Heng3, A. Hepstonstall3, M. Heurs1, Martin Hewitson1, Stefan Hild1, J. H. Hough3, Yousuke Itoh1, Gareth Jones2, Roger Jones3, S. H. Huttner3, Karsten Kötter1, Badri Krishnan1, P. Kwee1, Harald Lück1, Manuel Luna5, B. Machenschalk1, M. Malec1, R. A. Mercer4, T. Meier1, C. Messenger4, Soumya D. Mohanty1, Kasem Mossavi1, Soma Mukherjee1, P. G. Murray3, G. Newton3, Maria Alessandra Papa1, Michael Perreur-Lloyd3, Matthew Pitkin3, M. V. Plissi3, Reinhard Prix1, V. Quetschke1, V. Re4, T. Regimbau2, H. Rehbein1, Stuart Reid3, L. Ribichini1, D. I. Robertson3, N. A. Robertson3, N. A. Robertson6, C. Robinson2, Joseph D. Romano2, Sheila Rowan3, Albrecht Rüdiger1, Bangalore Suryanarayana Sathyaprakash2, Roland Schilling1, Roman Schnabel1, Bernard F. Schutz1, Bernard F. Schutz2, Frank Seifert1, A. M. Sintes5, J. R. Smith1, Peter H. Sneddon3, Kenneth A. Strain3, Ian Taylor2, Richard J. K. Taylor3, Andre Thüring1, Carlo Ungarelli4, Henning Vahlbruch1, Alberto Vecchio4, John Veitch3, H. Ward3, U. Weiland1, Herbert Welling, Linqing Wen1, P. Williams1, Walter Winkler1, Graham Woan3, R. Zhu1 
TL;DR: The GEO-HF project as mentioned in this paper is a project to improve the sensitivity of the GEO detector by small sequential upgrades some of which will be tested in prototypes first, and the development, test and installation of these upgrades are named as the "Geo-HF Project."
Abstract: The GEO 600 gravitational wave detector uses advanced technologies including signal recycling and monolithic fused-silica suspensions to achieve a sensitivity close to the kilometre scale LIGO and VIRGO detectors. As soon as the design sensitivity of GEO 600 is reached, the detector will be operated as part of the worldwide network to acquire data of scientific interest. The limited infrastructure at the GEO site does not allow for a major upgrade of the detector. Hence the GEO collaboration decided to improve the sensitivity of the GEO detector by small sequential upgrades some of which will be tested in prototypes first. The development, test and installation of these upgrades are named 'The GEO-HF Project.' This paper describes the upgrades considered in the GEO-HF project as well as their scientific reasons. We will describe the changes in the GEO 600 infrastructure and the prototype work that is planned to support these upgrades. Finally, we will point to some laboratory research that identifies new technologies or optical configurations that might undergo a transition into detector subsystems within the GEO-HF project.

153 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: The field of cavity optomechanics explores the interaction between electromagnetic radiation and nano-or micromechanical motion as mentioned in this paper, which explores the interactions between optical cavities and mechanical resonators.
Abstract: We review the field of cavity optomechanics, which explores the interaction between electromagnetic radiation and nano- or micromechanical motion This review covers the basics of optical cavities and mechanical resonators, their mutual optomechanical interaction mediated by the radiation pressure force, the large variety of experimental systems which exhibit this interaction, optical measurements of mechanical motion, dynamical backaction amplification and cooling, nonlinear dynamics, multimode optomechanics, and proposals for future cavity quantum optomechanics experiments In addition, we describe the perspectives for fundamental quantum physics and for possible applications of optomechanical devices

4,031 citations

Journal ArticleDOI
TL;DR: Extended Theories of Gravity as discussed by the authors can be considered as a new paradigm to cure shortcomings of General Relativity at infrared and ultraviolet scales, which is an approach that, by preserving the undoubtedly positive results of Einstein's theory, is aimed to address conceptual and experimental problems recently emerged in astrophysics, cosmology and High Energy Physics.

2,776 citations

Journal ArticleDOI
29 Aug 2008-Science
TL;DR: Recent experiments have reached a regime where the back-action of photons caused by radiation pressure can influence the optomechanical dynamics, giving rise to a host of long-anticipated phenomena.
Abstract: The coupling of optical and mechanical degrees of freedom is the underlying principle of many techniques to measure mechanical displacement, from macroscale gravitational wave detectors to microscale cantilevers used in scanning probe microscopy. Recent experiments have reached a regime where the back-action of photons caused by radiation pressure can influence the optomechanical dynamics, giving rise to a host of long-anticipated phenomena. Here we review these developments and discuss the opportunities for innovative technology as well as for fundamental science.

1,718 citations

Journal ArticleDOI
TL;DR: In this paper, a pedagogical introduction to the physics of quantum noise and its connections to quantum measurement and quantum amplification is given, and the basics of weak continuous measurements are described.
Abstract: The topic of quantum noise has become extremely timely due to the rise of quantum information physics and the resulting interchange of ideas between the condensed matter and atomic, molecular, optical--quantum optics communities. This review gives a pedagogical introduction to the physics of quantum noise and its connections to quantum measurement and quantum amplification. After introducing quantum noise spectra and methods for their detection, the basics of weak continuous measurements are described. Particular attention is given to the treatment of the standard quantum limit on linear amplifiers and position detectors within a general linear-response framework. This approach is shown how it relates to the standard Haus-Caves quantum limit for a bosonic amplifier known in quantum optics and its application to the case of electrical circuits is illustrated, including mesoscopic detectors and resonant cavity detectors.

1,581 citations