scispace - formally typeset
Search or ask a question
Author

H. Rosenbauer

Bio: H. Rosenbauer is an academic researcher from Max Planck Society. The author has contributed to research in topics: Solar wind & Magnetopause. The author has an hindex of 51, co-authored 198 publications receiving 12762 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The Cluster Ion Spectrometry (CIS) experiment as discussed by the authors measured the full, three-dimensional ion distribution of the major magnetospheric ions (H+, He+, He++, and O+) from the thermal energies to about 40 keV/e.
Abstract: . On board the four Cluster spacecraft, the Cluster Ion Spectrometry (CIS) experiment measures the full, three-dimensional ion distribution of the major magnetospheric ions (H+, He+, He++, and O+) from the thermal energies to about 40 keV/e. The experiment consists of two different instruments: a COmposition and DIstribution Function analyser (CIS1/CODIF), giving the mass per charge composition with medium (22.5°) angular resolution, and a Hot Ion Analyser (CIS2/HIA), which does not offer mass resolution but has a better angular resolution (5.6°) that is adequate for ion beam and solar wind measurements. Each analyser has two different sensitivities in order to increase the dynamic range. First tests of the instruments (commissioning activities) were achieved from early September 2000 to mid January 2001, and the operation phase began on 1 February 2001. In this paper, first results of the CIS instruments are presented showing the high level performances and capabilities of the instruments. Good examples of data were obtained in the central plasma sheet, magnetopause crossings, magnetosheath, solar wind and cusp measurements. Observations in the auroral regions could also be obtained with the Cluster spacecraft at radial distances of 4–6 Earth radii. These results show the tremendous interest of multispacecraft measurements with identical instruments and open a new area in magnetospheric and solar wind-magnetosphere interaction physics. Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; magnetopheric configuration and dynamics; solar wind - magnetosphere interactions)

1,209 citations

Journal ArticleDOI
28 Mar 2002-Nature
TL;DR: The results demonstrate that the spontaneous generation of amino acids in the interstellar medium is possible, supporting the suggestion that prebiotic molecules could have been delivered to the early Earth by cometary dust, meteorites or interplanetary dust particles.
Abstract: Amino acids are the essential molecular components of living organisms on Earth, but the proposed mechanisms for their spontaneous generation have been unable to account for their presence in Earth's early history1. The delivery of extraterrestrial organic compounds has been proposed as an alternative to generation on Earth2,3,4,5, and some amino acids have been found in several meteorites6,7,8,9. Here we report the detection of amino acids in the room-temperature residue of an interstellar ice analogue that was ultraviolet-irradiated in a high vacuum at 12 K. We identified 16 amino acids; the chiral ones showed enantiomeric separation. Some of the identified amino acids are also found in meteorites. Our results demonstrate that the spontaneous generation of amino acids in the interstellar medium is possible, supporting the suggestion that prebiotic molecules could have been delivered to the early Earth by cometary dust, meteorites or interplanetary dust particles.

743 citations

Journal ArticleDOI
TL;DR: In this paper, it was found that a strong anisotropy in the core of proton distributions, with a temperature that is larger perpendicular rather than parallel to the magnetic field, is a persistent feature of high-speed streams, becoming most pronounced in the perihelion, or about 0.3 AU.
Abstract: Such nonthermal features as temperature anisotropies, heat fluxes, and proton double streams have been observed by a Helios solar probe survey of solar wind three-dimensional proton velocity distributions between 0.3 and 1 AU. It is found that a strong anisotropy in the core of proton distributions, with a temperature that is larger perpendicular rather than parallel to the magnetic field, is a persistent feature of high-speed streams, becoming most pronounced in the perihelion, or about 0.3 AU. Isotropic distributions have been detected only close to, and at, magnetic sector boundaries, and the flattest radial temperature profiles are found in high-speed streams. These observations indicate that local heating or proton heat conduction occurs in the solar wind.

723 citations

Journal ArticleDOI
TL;DR: In this article, Heos 2 plasma and magnetic field data obtained in the frontside boundary layers of the magnetosphere are presented, revealing that the low-latitude extension of the entry layer is of a somewhat different nature.
Abstract: Further Heos 2 plasma and magnetic field data obtained in the frontside boundary layers of the magnetosphere are presented. They reveal that the low-latitude extension of the entry layer is of a somewhat different nature. The most pronounced difference with respect to the entry layer in the cusp region is the substantial density jump at the magnetopause. Furthermore, the low-latitude boundary layer tends to be thinner and less turbulent, and the flow velocity inside the layer is always lower than that of the adjacent magnetosheath. This observation excludes large-scale reconnection at the front of the magnetosphere as the origin of the layer. It is suggested that diffusive entry of magnetosheath plasma and/or heating of detached plasma from the plasmasphere leads to the formation of the layer. It appears likely that reconnection is dominantly occurring as a transient process in the cusp region and accompanies the eddy convection inside the entry layer. As a consequence, magnetic flux is being eroded from the front of the magnetosphere. This is in agreement with the signature of short-term large-amplitude magnetic perturbations observed in the low-latitude boundary layer.

616 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed description of plasmasmas in the distant polar magnetosphere has been provided by the Heos 2 satellite, which revealed the presence of a persistent layer of tailward-flowing magnetosheath-like plasma inside of and adjacent to the magnetopause.
Abstract: Comprehensive plasma observations carried out on board the Heos 2 satellite have provided the first systematic description of plasmas in the distant polar magnetosphere. These observations have revealed the presence of a persistent layer of tailward-flowing magnetosheathlike plasma inside of and adjacent to the magnetopause. This region has been termed the ‘plasma mantle.’ The mantle has been found to extend over the entire surface of the magnetosphere tailward of the polar cusp and northward of the plasma sheet. Vela observations of a ‘magnetotail boundary layer’ obtained in the vicinity of the plasma sheet by Hones and coworkers refer to the same phenomenon. The salient features of the plasma mantle as provided by Heos measurements from February to December 1972 can be summarized as follows: (1) The mantle was found to be present in over 70% of the passes through the polar magnetosphere in the region described above. (2) Its thickness varies greatly, ranging up to ≳ 4 RE, and does not appear to depend significantly on position or the state of the magnetosphere as measured by Kp. (3) A tailward-directed bulk flow parallel to the local terrestrial magnetic field was nearly always distinctly measurable. It was found to lie usually between 100 and 200 km s−1 and was always less than the concurrent flow speed in the nearby magneto sheath. (4) The flow speed in the mantle is positively correlated with the flow speeds in the magnetosheath and solar wind but depends only very weakly, if at all, on distance from the polar cusp, i.e., on XGSM. (5) A narrow region of low density and/or low flow speed plasma, i.e., a ‘gap,’ 0.1–0.2 RE thick, is frequently observed between the plasma mantle and the magnetopause. (6) The mantle protons are normally significantly cooler along B than perpendicular, i.e., T∥ < T⊥. (7) The proton density, temperature, and bulk speed all tend to decrease gradually with depth inside the magnetopause, but this trend can at times be obscured by fluctuations and magnetopause motions. At the inner edge of the mantle the proton distribution is often very narrow in both energy and angle, i.e., relatively cold, before it finally disappears below the 100-eV threshold of the instrument. It is concluded, after an appraisal of several possible mechanisms, that the most probable cause for the formation of the mantle is the day side merging of terrestrial and interplanetary field lines.

528 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, an attempt is made to define a geomagnetic storm as an interval of time when a sufficiently intense and long-lasting interplanetary convection electric field leads, through a substantial energization in the magnetosphere-ionosphere system, to an intensified ring current sufficiently strong to exceed some key threshold of the quantifying storm time Dst index.
Abstract: After a brief review of magnetospheric and interplanetary phenomena for intervals with enhanced solar wind-magnetosphere interaction, an attempt is made to define a geomagnetic storm as an interval of time when a sufficiently intense and long-lasting interplanetary convection electric field leads, through a substantial energization in the magnetosphere-ionosphere system, to an intensified ring current sufficiently strong to exceed some key threshold of the quantifying storm time Dst index. The associated storm/substorm relationship problem is also reviewed. Although the physics of this relationship does not seem to be fully understood at this time, basic and fairly well established mechanisms of this relationship are presented and discussed. Finally, toward the advancement of geomagnetic storm research, some recommendations are given concerning future improvements in monitoring existing geomagnetic indices as well as the solar wind near Earth.

1,963 citations

Journal ArticleDOI
TL;DR: The flow behind an interplanetary shock was analyzed through the use of magnetic field and plasma data from five spacecraft, with emphasis on the magnetic cloud identified by a characteristic variation of the latitude angle of the magnetic field.
Abstract: The flow behind an interplanetary shock was analyzed through the use of magnetic field and plasma data from five spacecraft, with emphasis on the magnetic cloud identified by a characteristic variation of the latitude angle of the magnetic field. The size of the cloud was found to be about 0.5 AU in radial extent and greater than 30 deg in azimuthal extent, with its front boundary almost normal to the radial direction. Because the field direction of the magnetic cloud as it moved past the spacecraft was observed to rotate nearly parallel to a plane, it is thought that the field configuration of the cloud was essentially two-dimensional. These results further suggest that the lines of force in the magnetic cloud formed loops, but it could not be determined whether these loops were open or closed.

1,575 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on a topic of fundamental importance for both plasma physics and astrophysics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state.
Abstract: In this review we will focus on a topic of fundamental importance for both plasma physics and astrophysics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state. This subject will be treated within the context of the expanding solar wind and the most meaningful advances in this research field will be reported emphasizing the results obtained in the past decade or so. As a matter of fact, Ulysses’ high latitude observations and new numerical approaches to the problem, based on the dynamics of complex systems, brought new important insights which helped to better understand how turbulent fluctuations behave in the solar wind. In particular, numerical simulations within the realm of magnetohydrodynamic (MHD) turbulence theory unraveled what kind of physical mechanisms are at the basis of turbulence generation and energy transfer across the spectral domain of the fluctuations. In other words, the advances reached in these past years in the investigation of solar wind turbulence now offer a rather complete picture of the phenomenological aspect of the problem to be tentatively presented in a rather organic way.

1,212 citations

Journal ArticleDOI
TL;DR: The Cluster Ion Spectrometry (CIS) experiment as discussed by the authors measured the full, three-dimensional ion distribution of the major magnetospheric ions (H+, He+, He++, and O+) from the thermal energies to about 40 keV/e.
Abstract: . On board the four Cluster spacecraft, the Cluster Ion Spectrometry (CIS) experiment measures the full, three-dimensional ion distribution of the major magnetospheric ions (H+, He+, He++, and O+) from the thermal energies to about 40 keV/e. The experiment consists of two different instruments: a COmposition and DIstribution Function analyser (CIS1/CODIF), giving the mass per charge composition with medium (22.5°) angular resolution, and a Hot Ion Analyser (CIS2/HIA), which does not offer mass resolution but has a better angular resolution (5.6°) that is adequate for ion beam and solar wind measurements. Each analyser has two different sensitivities in order to increase the dynamic range. First tests of the instruments (commissioning activities) were achieved from early September 2000 to mid January 2001, and the operation phase began on 1 February 2001. In this paper, first results of the CIS instruments are presented showing the high level performances and capabilities of the instruments. Good examples of data were obtained in the central plasma sheet, magnetopause crossings, magnetosheath, solar wind and cusp measurements. Observations in the auroral regions could also be obtained with the Cluster spacecraft at radial distances of 4–6 Earth radii. These results show the tremendous interest of multispacecraft measurements with identical instruments and open a new area in magnetospheric and solar wind-magnetosphere interaction physics. Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; magnetopheric configuration and dynamics; solar wind - magnetosphere interactions)

1,209 citations

Journal ArticleDOI
TL;DR: The THEMIS Fluxgate Magnetometer (FGM) as discussed by the authors was designed to study abrupt reconfigurations of the Earth's magnetosphere during the substorm onset phase and is capable of detecting variations of the magnetic field with amplitudes of 0.01 nT.
Abstract: The THEMIS Fluxgate Magnetometer (FGM) measures the background magnetic field and its low frequency fluctuations (up to 64 Hz) in the near-Earth space. The FGM is capable of detecting variations of the magnetic field with amplitudes of 0.01 nT, and it is particularly designed to study abrupt reconfigurations of the Earth’s magnetosphere during the substorm onset phase. The FGM uses an updated technology developed in Germany that digitizes the sensor signals directly and replaces the analog hardware by software. Use of the digital fluxgate technology results in lower mass of the instrument and improved robustness. The present paper gives a description of the FGM experimental design and the data products, the extended calibration tests made before spacecraft launch, and first results of its magnetic field measurements during the first half year in space. It is also shown that the FGM on board the five THEMIS spacecraft well meets and even exceeds the required conditions of the stability and the resolution for the magnetometer.

1,198 citations