scispace - formally typeset
Search or ask a question
Author

H.-S. Park

Bio: H.-S. Park is an academic researcher from Lawrence Livermore National Laboratory. The author has contributed to research in topics: National Ignition Facility & Implosion. The author has an hindex of 47, co-authored 193 publications receiving 11118 citations.


Papers
More filters
Journal ArticleDOI
20 Aug 2004
TL;DR: The Swift mission as discussed by the authors is a multi-wavelength observatory for gamma-ray burst (GRB) astronomy, which is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions.
Abstract: The Swift mission, scheduled for launch in 2004, is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts yr � 1 and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to (1) determine the origin of GRBs, (2) classify GRBs and search for new types, (3) study the interaction of the ultrarelativistic outflows of GRBs with their surrounding medium, and (4) use GRBs to study the early universe out to z >10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a newgeneration wide-field gamma-ray (15‐150 keV) detector that will detect bursts, calculate 1 0 ‐4 0 positions, and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5 00 positions and perform spectroscopy in the 0.2‐10 keV band; and a narrow-field UV/optical telescope that will operate in the 170‐ 600 nm band and provide 0B3 positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of � 1m crab (� 2;10 � 11 ergs cm � 2 s � 1 in the 15‐150 keV band), more than an order of magnitude better than HEAO 1 A-4. A flexible data and operations system will allow rapid follow-up observations of all types of

3,753 citations

Journal ArticleDOI
20 Feb 2014-Nature
TL;DR: In this article, the authors report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a high-foot implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion.
Abstract: Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved. A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium-tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a 'high-foot' implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium-tritium implosion experiments. We also see a significant contribution to the yield from α-particle self-heating and evidence for the 'bootstrapping' required to accelerate the deuterium-tritium fusion burn to eventually 'run away' and ignite.

733 citations

Journal ArticleDOI
TL;DR: In this paper, the Weibel instability, a possible mechanism for developing such shocks, has been generated in a laboratory set-up with laser-generated plasmas, and it has been shown that collisionless plasma shock waves are often driven by collisionless shock waves.
Abstract: Astrophysical processes are often driven by collisionless plasma shock waves. The Weibel instability, a possible mechanism for developing such shocks, has now been generated in a laboratory set-up with laser-generated plasmas.

280 citations

Journal ArticleDOI
M. J. Edwards1, P. K. Patel, J. D. Lindl1, L. J. Atherton, Siegfried Glenzer, S. W. Haan, J. D. Kilkenny, O. L. Landen, Edward I. Moses, A. Nikroo, R. D. Petrasso, T. C. Sangster, P. T. Springer, Steven H. Batha, R. Benedetti, L. A. Bernstein, Riccardo Betti, D. L. Bleuel, T. R. Boehly, D. K. Bradley, J. A. Caggiano, D. A. Callahan, P. M. Celliers, C. J. Cerjan, K. C. Chen, Daniel Clark, Gilbert Collins, E. L. Dewald, Laurent Divol, S. N. Dixit, Tilo Doeppner, D. H. Edgell, James E. Fair, Michael Farrell, R. J. Fortner, Johan Frenje, M. Gatu Johnson, E. M. Giraldez, V. Yu. Glebov, Gary Grim, B. A. Hammel, A. V. Hamza, D. R. Harding, S. P. Hatchett, N. Hein, Hans W. Herrmann, Damien Hicks, D. E. Hinkel, M. Hoppe, W. W. Hsing, Nobuhiko Izumi, B. Jacoby, O. S. Jones, Daniel H. Kalantar, Robert L. Kauffman, John Kline, J. P. Knauer, J. A. Koch, B. J. Kozioziemski, G. A. Kyrala, K. N. LaFortune, S. Le Pape, R. J. Leeper, R. A. Lerche, T. Ma, B. J. MacGowan, A. J. Mackinnon, Andrew MacPhee, Evan Mapoles, M. M. Marinak, M. Mauldin, P. W. McKenty, M. Meezan, Pierre Michel, Jose Milovich, J. D. Moody, Matthew Moran, D. H. Munro, C. L. Olson, Kathy Opachich, Art Pak, T. G. Parham, H.-S. Park, Joseph Ralph, Sean Regan, Bruce Remington, H. G. Rinderknecht, Harry Robey, M. D. Rosen, Steven Ross, Jay D. Salmonson, J. D. Sater, D. H. Schneider, Fredrick Seguin, Scott Sepke, D. A. Shaughnessy, V. A. Smalyuk, Brian Spears, Christian Stoeckl, Wolfgang Stoeffl, L. J. Suter, Cliff Thomas, R. Tommasini, Richard Town, S. V. Weber, Paul J. Wegner, K. Widman, Mark D. Wilke, Doug Wilson, Charles Yeamans, Alex Zylstra 
TL;DR: In this paper, a low-Z capsule filled with deuterium-tritium (DT) fuel via laser indirect-drive inertial confinement fusion and demonstrate fusion ignition and propagating thermonuclear burn with a net energy gain of ∼5-10 (fusion yield/input laser energy).
Abstract: The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory includes a precision laser system now capable of delivering 1.8 MJ at 500 TW of 0.35-μm light to a target. NIF has been operational since March 2009. A variety of experiments have been completed in support of NIF's mission areas: national security, fundamental science, and inertial fusion energy. NIF capabilities and infrastructure are in place to support its missions with nearly 60 X-ray, optical, and nuclear diagnostic systems. A primary goal of the National Ignition Campaign (NIC) on the NIF was to implode a low-Z capsule filled with ∼0.2 mg of deuterium-tritium (DT) fuel via laser indirect-drive inertial confinement fusion and demonstrate fusion ignition and propagating thermonuclear burn with a net energy gain of ∼5–10 (fusion yield/input laser energy). This requires assembling the DT fuel into a dense shell of ∼1000 g/cm3 with an areal density (ρR) of ∼1.5 g/cm2, surrounding a lower density hot spot with a temperature of ∼10 keV and a ρR ∼0.3 g/cm2, or approximately an α-particle range. Achieving these conditions demand precise control of laser and target parameters to allow a low adiabat, high convergence implosion with low ablator fuel mix. We have demonstrated implosion and compressed fuel conditions at ∼80–90% for most point design values independently, but not at the same time. The nuclear yield is a factor of ∼3–10× below the simulated values and a similar factor below the alpha dominated regime. This paper will discuss the experimental trends, the possible causes of the degraded performance (the off-set from the simulations), and the plan to understand and resolve the underlying physics issues.

271 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported the detection of 45 microlensing events in fields toward the Galactic bulge from the analysis of 24 fields containing 12.6 million stars observed for 190 days in 1993.
Abstract: We report the detection of 45 candidate microlensing events in fields toward the Galactic bulge. These come from the analysis of 24 fields containing 12.6 million stars observed for 190 days in 1993. Many of these events are of extremely high signal-to-noise ratio and are remarkable examples of gravitational microlensing. The distribution of peak magnifications is shown to be consistent with the microlensing interpretation of these events. Using a subsample of 1.3 million {open_quotes}clump giant{close_quotes} stars whose distance and detection efficiency are well known, we find 13 events and estimate the microlensing optical depth toward the Galactic bulge as {tau}{sub bulge}=3.9{sub {minus}1.2}{sup +1.8}{times}10{sup {minus}6} averaged over an area of {approximately}12deg{sup 2} centered at Galactic coordinates l=2.55{degree} and b=3.64{degree}. This is similar to the value reported by the OGLE collaboration and is marginally higher than current theoretical models for {tau}{sub bulge}. The optical depth is also seen to increase significantly for decreasing {vert_bar}b{vert_bar}. These results demonstrate that obtaining large numbers of microlensing events toward the Galactic bulge is feasible, and that the study of such events will have important consequences for the structure of the Galaxy and its dark halo. {copyright} {ital 1997} {ital The American Astronomical Society}

236 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
Claude Amsler1, Michael Doser2, Mario Antonelli, D. M. Asner3  +173 moreInstitutions (86)
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.

12,798 citations

Journal ArticleDOI
20 Aug 2004
TL;DR: The Swift mission as discussed by the authors is a multi-wavelength observatory for gamma-ray burst (GRB) astronomy, which is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions.
Abstract: The Swift mission, scheduled for launch in 2004, is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts yr � 1 and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to (1) determine the origin of GRBs, (2) classify GRBs and search for new types, (3) study the interaction of the ultrarelativistic outflows of GRBs with their surrounding medium, and (4) use GRBs to study the early universe out to z >10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a newgeneration wide-field gamma-ray (15‐150 keV) detector that will detect bursts, calculate 1 0 ‐4 0 positions, and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5 00 positions and perform spectroscopy in the 0.2‐10 keV band; and a narrow-field UV/optical telescope that will operate in the 170‐ 600 nm band and provide 0B3 positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of � 1m crab (� 2;10 � 11 ergs cm � 2 s � 1 in the 15‐150 keV band), more than an order of magnitude better than HEAO 1 A-4. A flexible data and operations system will allow rapid follow-up observations of all types of

3,753 citations

Journal ArticleDOI
TL;DR: In this paper, a short introduction to N = 1 supersymmetry and supergravity and review the attempts to construct models in which the breakdown scale of the weak interactions is related to supersymmetric breaking is given.

3,056 citations