scispace - formally typeset
Search or ask a question
Author

H. Saunders

Bio: H. Saunders is an academic researcher from General Electric. The author has contributed to research in topics: Nuclear power & Power transmission. The author has an hindex of 1, co-authored 1 publications receiving 1759 citations.

Papers
More filters
Book
01 Jan 1977
TL;DR: In this paper, the authors focus on applications for offshore platforms and piping; wind-induced vibration of buildings, bridges, and towers; and acoustic and mechanical vibration of heat exchangers, power lines, and process ducting.
Abstract: This book focuses on applications for offshore platforms and piping; wind-induced vibration of buildings, bridges, and towers; and acoustic and mechanical vibration of heat exchangers, power lines, and process ducting. Numerous examples drive home the reality of the practical problems encountered here. More than 200 figures and 20 tables complement the text by providing such data as damping factors, lift coefficients, and the formulas needed to apply practical methods directly to a wide range of structures, from heat exchangers to hypersonic aircraft. Devoted to the analysis and prediction of flow-induced vibrations, this volume will prove of immense interest to mechanical, civil, nuclear, marine, structural, and electrical engineers; physicists, designers, and naval architects; and people working in the construction and petroleum industries, power plants, power transmission, ship building, nuclear power, energy production, and defense engineering.

1,759 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of the progress made during the past two decades on vortex-induced vibration (VIV) of mostly circular cylindrical structures subjected to steady uniform flow is presented in this article.

1,368 citations

Journal ArticleDOI
TL;DR: In this article, a model is developed to describe the drag, turbulence and diffusion for flow through emergent vegetation, which for the first time captures the relevant underlying physics, and covers the natural range of vegetation density and stem Reynolds' numbers.
Abstract: Aquatic plants convert mean kinetic energy into turbulent kinetic energy at the scale of the plant stems and branches. This energy transfer, linked to wake generation, affects vegetative drag and turbulence intensity. Drawing on this physical link, a model is developed to describe the drag, turbulence and diffusion for flow through emergent vegetation which for the first time captures the relevant underlying physics, and covers the natural range of vegetation density and stem Reynolds' numbers. The model is supported by laboratory and field observations. In addition, this work extends the cylinder-based model for vegetative resistance by including the dependence of the drag coefficient, CD, on the stem population density, and introduces the importance of mechanical diffusion in vegetated flows.

1,199 citations

Journal ArticleDOI
TL;DR: In this paper, the authors showed that there exist two distinct types of response in a very low mass and damping regime, depending on whether one has a low combined mass-damping parameter (low m*ζ), or a high mass-ding parameter (highm*δ).

944 citations

Journal ArticleDOI
TL;DR: In this article, the effects of Reynolds number in the nominal case of an infinitely long and non-confined cylinder in a smooth oncoming flow are discussed, from about Re = 47 to 2 x 10(5), i.e., from the onset of vortex shedding up to the end of the subcritical regime.

939 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present control methods for flow over a bluff body such as a circular cylinder, a 2D bluff body with a blunt trailing edge, and a sphere.
Abstract: In this review, we present control methods for flow over a bluff body such as a circular cylinder, a 2D bluff body with a blunt trailing edge, and a sphere. We introduce recent major achievements in bluff-body flow controls such as 3D forcing, active feedback control, control based on local and global instability, and control with a synthetic jet. We then classify the controls as boundary-layer controls and direct-wake modifications and discuss important features associated with these controls. Finally, we discuss some other issues such as Reynolds-number dependence, the lowest possible drag by control, and control efficiency.

827 citations