scispace - formally typeset
Search or ask a question
Author

H. Steyskal

Bio: H. Steyskal is an academic researcher from Air Force Research Laboratory. The author has contributed to research in topics: Clutter & Space-based radar. The author has an hindex of 6, co-authored 8 publications receiving 519 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a technique to compensate for mutual coupling in a small array is developed and experimentally verified, which consists of a matrix multiplication performed on the received-signal vector.
Abstract: A technique to compensate for mutual coupling in a small array is developed and experimentally verified. Mathematically, the compensation consists of a matrix multiplication performed on the received-signal vector. This, in effect, restores the signals as received by the isolated elements in the absence of mutual coupling. This technique is most practical for digital beamforming antennas where the matrix operation can be readily implemented. >

393 citations

Proceedings ArticleDOI
05 Mar 2005
TL;DR: In this article, the design considerations and results for an overlapped subarray radar antenna, including a custom subarray weighting function and the corresponding circuit design and fabrication, are presented.
Abstract: Overlapped subarray networks produce flat-topped sector patterns with low sidelobes that suppress grating lobes outside of the main beam of the subarray pattern. They are typically used in limited scan applications, where it is desired to minimize the number of controls required to steer the beam. However, the architecture of an overlapped subarray antenna includes many signal crossovers and a wide variation in splitting/combining ratios, which make it difficult to maintain required error tolerances. This paper presents the design considerations and results for an overlapped subarray radar antenna, including a custom subarray weighting function and the corresponding circuit design and fabrication. Measured pattern results will be shown for a prototype design compared with desired patterns.

62 citations

Journal ArticleDOI
TL;DR: In this article, a novel technique for pattern synthesis in angle-frequency space is proposed, which exploits the double periodicities of the grating lobes in the angular domain and of the radar pulses in the frequency domain, and allows substantial gains in clutter suppression.
Abstract: The TechSat21 space-based radar employs a cluster of free-floating satellites, each of which transmits its own orthogonal signal and receives all reflected signals. The satellites operate coherently at the X band. The cluster forms essentially a multielement interferometer, with a concomitantly large number of grating lobes and significant ground clutter. A novel technique for pattern synthesis in angle-frequency space is proposed, which exploits the double periodicities of the grating lobes in the angular domain and of the radar pulses in the frequency domain, and allows substantial gains in clutter suppression. Gains from 7 to 17 dB relative to the normal random, sparse array appear feasible.

39 citations

Proceedings ArticleDOI
09 Mar 2002
TL;DR: In this paper, a computer model for a line array wrapped around a wing is presented, where the effects of mutual coupling and the local radius of curvature are taken into account.
Abstract: Future aircraft may utilize the large aerodynamic areas of the wings also for electrodynamics by structurally embedding conformal phased array antennas. We explore this concept with a computer model for a line array wrapped around a wing. The model uses a realistic wing profile and array element patterns which include the effects of mutual coupling and the local radius of curvature. The study has two objectives: 1) develop a pattern synthesis method which is effective for this non-conventional array shape, and 2) determine whether low sidelobe patterns can be realized. We find that pattern synthesis based on alternating projections is a flexible and highly efficient synthesis method. No convergence problems due to local minima occurred. High quality patterns with uniform low sidelobes were achieved for most beam directions, except in a narrow sector about the difficult forward direction, where there appears to be a sidelobe floor of roughly -23 dB.

24 citations

Proceedings ArticleDOI
10 Mar 2001
TL;DR: In this paper, a novel technique for pattern synthesis in angle-frequency space is proposed, which exploits the double periodicities of the grating lobes in the angular domain and of the radar pulses in the frequency domain, and allows substantial gains in clutter suppression.
Abstract: The TechSat21 space-based radar employs a cluster of free-floating satellites, each of which transmits its own orthogonal signal and receives all reflected signals. The satellites operate coherently at X-band. The cluster forms essentially a multi-element interferometer with a concomitant large number of grating lobes and significant ground clutter. A novel technique for pattern synthesis in angle-frequency space is proposed, which exploits the double periodicities of the grating lobes in the angular domain and of the radar pulses in the frequency domain, and allows substantial gains in clutter suppression. Gains from 7 to 17 dB relative to the normal random, sparse array appear feasible.

18 citations


Cited by
More filters
Book
30 Nov 1993
TL;DR: Details of Element Pattern and Mutual Impedance Effects for Phased Arrays and Special Array Feeds for Limited Field of View and Wideband Arrays are presented.
Abstract: Phased Arrays in Radar and Communication Systems. Pattern Characteristics and Synthesis of Linear and Planar Arrays. Patterns of Nonplanar Arrays. Elements, Transmission Lines, and Feed Architectures for Phased Arrays. Summary of Element Pattern and Mutual Impedance Effects. Array Error Effects. Special Array Feeds for Limited Field of View and Wideband Arrays.

2,233 citations

Book
01 Jan 2007
TL;DR: This book includes an overview of smart antenna concepts, introduces some of the areas that impact smart antennas, and examines the influence of interaction and integration of these areas to Mobile Ad-Hoc Networks.
Abstract: As the growing demand for mobile communications is constantly increasing, the need for better coverage, improved capacity, and higher transmission quality rises. Thus, a more efficient use of the radio spectrum is required. Smart antenna systems are capable of efficiently utilizing the radio spectrum and is a promise for an effective solution to the present wireless systems problems while achieving reliable and robust high-speed high-data-rate transmission. The purpose of this book is to provide the reader a broad view of the system aspects of smart antennas. In fact, smart antenna systems comprise several critical areas such as individual antenna array design, signal processing algorithms, space-time processing, wireless channel modeling and coding, and network performance. In this book we include an overview of smart antenna concepts, introduce some of the areas that impact smart antennas, and examine the influence of interaction and integration of these areas to Mobile Ad-Hoc Networks. In addition, the general principles and major benefits of using space-time processing are introduced, especially employing multiple-input multiple-output (MIMO) techniques.

272 citations

Journal ArticleDOI
TL;DR: Numerical results provide insight into the spatial variations of attainable capacity within a room, and the combinations of beamsteering and spatial multiplexing used in different scenarios are provided.
Abstract: In this paper, we investigate spatial multiplexing at millimeter (mm) wave carrier frequencies for short-range indoor applications by quantifying fundamental limits in line-of-sight (LOS) environments and then investigating performance in the presence of multipath and LOS blockage. Our contributions are summarized as follows. For linear arrays with constrained form factor, an asymptotic analysis based on the properties of prolate spheroidal wave functions shows that a sparse array producing a spatially uncorrelated channel matrix effectively provides the maximum number of spatial degrees of freedom in a LOS environment, although substantial beamforming gains can be obtained by using denser arrays. This motivates our proposed mm-wave MIMO architecture, which utilizes arrays of subarrays to provide both directivity and spatial multiplexing gains. System performance is evaluated in a simulated indoor environment using a ray-tracing model that incorporates multipath effects and potential LOS blockage. Eigenmode transmission with waterfilling power allocation serves as a performance benchmark, and is compared to the simpler scheme of beamsteering transmission with MMSE reception and a fixed signal constellation. Our numerical results provide insight into the spatial variations of attainable capacity within a room, and the combinations of beamsteering and spatial multiplexing used in different scenarios.

270 citations

Journal ArticleDOI
01 Mar 2016
TL;DR: Next-generation phased arrays will employ high levels of digitization, which enables a wide range of improvements in capability and performance.
Abstract: Phased array technology has been evolving steadily with advances in solid-state microwave integrated circuits, analysis and design tools, and reliable fabrication practices. With significant government investments, the technologies have matured to a point where phased arrays are widely used in military systems. Next-generation phased arrays will employ high levels of digitization, which enables a wide range of improvements in capability and performance. Digital arrays leverage the rapid commercial evolution of digital processor technology. The cost of phased arrays can be minimized by utilizing high-volume commercial microwave manufacturing and packaging techniques. Dramatic cost reductions are achieved by employing a tile array architecture, which greatly reduces the number of printed circuit boards and connectors in the array.

249 citations

Journal ArticleDOI
TL;DR: The wide-band performance of four different matching networks for multiple dipole antennas is investigated and it is found that the efficiency advantage of multiport matching over individual-port matching diminishes with decreasing angular spread.
Abstract: We analyze the impact of the matching network on compact multiple-input multiple-output systems. Existing studies have found that the matching network has a significant influence on the performance of multiple antenna systems when the antennas are in close proximity. However, none has examined the wide-band case. In this paper, we investigate the wide-band performance of four different matching networks for multiple dipole antennas. The performance of the matching networks is given in terms of the bandwidths of correlation and matching efficiency, which are extensions of the single-antenna concept of bandwidth to multiple antenna systems. We also investigate the impact of the propagation conditions on the matching and bandwidth. For a uniform two-dimensional (2-D) angular power spectrum, we find that while individual-port matching can achieve in excess of 3% fractional correlation bandwidth for envelope correlation of 0.5 at an antenna separation of 0.01lambda, multiport matching is required for efficiency bandwidth to exist for a return loss of -6 dB. Moreover, even with multiport matching, both correlation and efficiency bandwidths decrease drastically at small antenna separations. At 0.01lambda, the correlation and efficiency bandwidths are 0.4% and 0.2%, respectively. Similar evaluations were performed for measured outdoor-to-indoor channels with moderate to small 2-D angular spreads. We find that the efficiency advantage of multiport matching over individual-port matching diminishes with decreasing angular spread

238 citations