scispace - formally typeset
Search or ask a question
Author

H. von Wenckstern

Bio: H. von Wenckstern is an academic researcher from Leipzig University. The author has contributed to research in topics: Thin film & Pulsed laser deposition. The author has an hindex of 25, co-authored 88 publications receiving 2621 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a multistep pulsed-laser deposition (PLD) process is presented for epitaxial, nominally undoped ZnO thin films of total thickness of 1 to 2 μm on c-plane sapphire substrates.
Abstract: A multistep pulsed-laser deposition (PLD) process is presented for epitaxial, nominally undoped ZnO thin films of total thickness of 1 to 2 μm on c-plane sapphire substrates. We obtain reproducibly high electron mobilities from 115 up to 155 cm2/V s at 300 K in a narrow carrier concentration range from 2 to 5×1016 cm−3. The key issue of the multistep PLD process is the insertion of 30-nm-thin ZnO relaxation layers deposited at reduced substrate temperature. The high-mobility samples show atomically flat surface structure with grain size of about 0.5–1 μm, whereas the surfaces of low-mobility films consist of clearly resolved hexagonally faceted columnar grains of only 200-nm size, as shown by atomic force microscopy. Structurally optimized PLD ZnO thin films show narrow high-resolution x-ray diffraction peak widths of the ZnO(0002) ω- and 2Θ-scans as low as 151 and 43 arcsec, respectively, and narrow photoluminescence linewidths of donor-bound excitons of 1.7 meV at 2 K.

594 citations

Journal ArticleDOI
TL;DR: In this article, a consistent set of epitaxial, n-type conducting ZnO thin films, nominally undoped, doped with Ga or Al, or alloyed with Mg or Cd, was grown by pulsed laser deposition (PLD) on single-crystalline c-plane sapphire (0, 0,0,1) substrates, and characterized by Hall measurement, and UV/VIS optical transmission spectroscopy.
Abstract: A consistent set of epitaxial, n-type conducting ZnO thin films, nominally undoped, doped with Ga or Al, or alloyed with Mg or Cd, was grown by pulsed laser deposition (PLD) on single-crystalline c-plane sapphire (0 0 0 1) substrates, and characterized by Hall measurement, and UV/VIS optical transmission spectroscopy. The optical band gap of undoped ZnO films at nearly 3.28 eV was shifted by alloying with Mg up to 4.5 eV and by alloying with Cd down to 3.18 eV, dependent on the alloy composition. In addition, highly doped ZnO:Al films show a blue-shifted optical absorption edge due to filling of electronic states in the conduction band. The Hall transport data of the PLD (Mg,Zn,Cd)O:(Ga,Al) thin films span a carrier concentration range of six orders of magnitude from 3 × 1014 to 3 × 1020 cm−3, which corresponds to a resistivity from 5 × 10−4 to 3 × 103 Ω cm. Structurally optimized, nominally undoped ZnO films grown with ZnO nucleation and top layer reached an electron mobility of 155 cm2/V s (300 K), which is among the largest values reported for heteroepitaxial ZnO thin films so far. Finally, we succeeded in combining the low resistivity of ZnO:Ga and the band gap shift of MgZnO in MgZnO:Ga thin films. This results demonstrate the unique tunability of the optical and electrical properties of the ZnO-based wide-band gap material for future electronic devices.

137 citations

Journal ArticleDOI
TL;DR: In this article, the positron lifetime in bulk ZnO is measured to be $(151\ifmmode\pm\else\textpm\fi{}2)\phantom{\rule{0.3em}{0ex}}\mathrm{ps}$ and that for positrons trapped in defects.
Abstract: High-quality single crystals of ZnO in the as-grown and ${\mathrm{N}}^{+}$ ion-implanted states have been investigated using a combination of three experimental techniques---namely, positron lifetime/slow positron implantation spectroscopy accompanied by theoretical calculations of the positron lifetime for selected defects, temperature-dependent Hall (TDH) measurements, and deep level transient spectroscopy (DLTS). The positron lifetime in bulk ZnO is measured to be $(151\ifmmode\pm\else\textpm\fi{}2)\phantom{\rule{0.3em}{0ex}}\mathrm{ps}$ and that for positrons trapped in defects $(257\ifmmode\pm\else\textpm\fi{}2)\phantom{\rule{0.3em}{0ex}}\mathrm{ps}$. On the basis of theoretical calculations the latter is attributed to $\mathrm{Zn}+\mathrm{O}$ divacancies, existing in the sample in neutral charge state, and not to the Zn vacancy proposed in previous experimental work. Their concentration is estimated to be $3.7\ifmmode\times\else\texttimes\fi{}{10}^{17}\phantom{\rule{0.3em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}3}$. From TDH measurements the existence of negatively charged intrinsic defects acting as compensating acceptors is concluded which are invisible to positrons---maybe interstitial oxygen. This view is supported from TDH results in combination with DLTS which revealed the creation of the defect $E1$, and an increase in concentration of the defect $E3$ after ${\mathrm{N}}^{+}$ ion implantation, and peculiarities in the observation of the defect $E4$.

130 citations

Journal ArticleDOI
TL;DR: In this paper, a high-pressure pulsed-laser deposition process using phosphorus pentoxide as the dopant source was used to prep phosphorus-doped ZnO:P nanowires for cathodoluminescence.
Abstract: Phosphorus-doped ZnO (ZnO:P) nanowires were successfully prepared by a novel high-pressure pulsed-laser deposition process using phosphorus pentoxide as the dopant source. Detailed cathodoluminescence studies of single ZnO:P nanowires revealed characteristic phosphorus acceptor-related peaks: neutral acceptor-bound exciton emission (A0, X, 3.356 eV), free-to-neutral-acceptor emission (e, A0, 3.314 eV), and donor-to-acceptor pair emission (DAP, ~3.24 and ~3.04 eV). This means that stable acceptor levels with a binding energy of about 122 meV have been induced in the nanowires by phosphorus doping. Moreover, the induced acceptors are distributed homogeneously along the doped nanowires.

112 citations

Journal ArticleDOI
TL;DR: The electrical properties of Schottky contacts produced ex situ on n-type ZnO single crystals and epitaxial thin films were investigated in this article, where electron beam induced current imaging was used to study lateral variations of the current induced in the space charge region of the SC.
Abstract: The electrical properties of Schottky contacts (SCs) produced ex situ on n-type ZnO single crystals and epitaxial thin films were investigated. Electron beam induced current imaging was used to study lateral variations of the current induced in the space charge region of the SC. Further, the effective barrier height was determined by current–voltage and capacitance–voltage measurements. Pd contacts prepared on ZnO thin films that had undergone treatment in a plasma-enhanced chemical vapor deposition with nitrous oxide (N2O) as ambient gas are laterally homogeneous with an effective barrier height of (600±30) meV.

109 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
TL;DR: The recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed andp-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed.
Abstract: Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which has led to the fabrication of high performance n- and p-type oxide transistors as well as the fabrication of CMOS devices with and on paper.

2,440 citations

Journal ArticleDOI
TL;DR: A comprehensive overview of the progress that has been made within the context of 1D ZnO nanostructures synthesized via wet chemical methods can be found in this paper, where the synthetic methodologies and corresponding growth mechanisms, different structures, doping and alloying, position-controlled growth on substrates, and finally, their functional properties as catalysts, hydrophobic surfaces, sensors, and in nanoelectronic, optical, optoelectronics, and energy harvesting devices.
Abstract: One-dimensional (1D) ZnO nanostructures have been studied intensively and extensively over the last decade not only for their remarkable chemical and physical properties, but also for their current and future diverse technological applications. This article gives a comprehensive overview of the progress that has been made within the context of 1D ZnO nanostructures synthesized via wet chemical methods. We will cover the synthetic methodologies and corresponding growth mechanisms, different structures, doping and alloying, position-controlled growth on substrates, and finally, their functional properties as catalysts, hydrophobic surfaces, sensors, and in nanoelectronic, optical, optoelectronic, and energy harvesting devices.

1,247 citations

Journal ArticleDOI
TL;DR: The rational synthesis of nitrogen-doped zinc oxide (ZnO:N) nanowire arrays, and their implementation as photoanodes in photoelectrochemical (PEC) cells for hydrogen generation from water splitting applications suggest substantial potential of metal oxide nanowires arrays with controlled doping in PEC water splitting Applications.
Abstract: We report the rational synthesis of nitrogen-doped zinc oxide (ZnO:N) nanowire arrays, and their implementation as photoanodes in photoelectrochemical (PEC) cells for hydrogen generation from water splitting. Dense and vertically aligned ZnO nanowires were first prepared from a hydrothermal method, followed by annealing in ammonia to incorporate N as a dopant. Nanowires with a controlled N concentration (atomic ratio of N to Zn) up to ∼4% were prepared by varying the annealing time. X-ray photoelectron spectroscopy studies confirm N substitution at O sites in ZnO nanowires up to ∼4%. Incident-photon-to-current-efficiency measurements carried out on PEC cell with ZnO:N nanowire arrays as photoanodes demonstrate a significant increase of photoresponse in the visible region compared to undoped ZnO nanowires prepared at similar conditions. Mott−Schottky measurements on a representative 3.7% ZnO:N sample give a flat-band potential of −0.58 V, a carrier density of ∼4.6 × 1018 cm−3, and a space-charge layer of ∼...

1,047 citations