scispace - formally typeset
Search or ask a question
Author

H. W. M. Salemink

Bio: H. W. M. Salemink is an academic researcher from Delft University of Technology. The author has contributed to research in topics: Photonic crystal & Ion beam. The author has an hindex of 16, co-authored 35 publications receiving 699 citations. Previous affiliations of H. W. M. Salemink include Kavli Institute of Nanoscience & Radboud University Nijmegen.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a pattern definition technique for dense sub-10-nm structures is presented, in terms of high resolution, high sensitivity, and a low proximity effect in a hydrogen silsesquioxane resist.
Abstract: Scanning helium ion beam lithography is presented as a promising pattern definition technique for dense sub-10-nm structures. The powerful performance in terms of high resolution, high sensitivity, and a low proximity effect is demonstrated in a hydrogen silsesquioxane resist.

134 citations

Journal ArticleDOI
TL;DR: By experimentally infiltrating solutions of water and ethanol through an elastomeric micro-fluidic channel, it is confirmed that the all-optical sensor achieves a sensitivity of 460 nm/RIU.
Abstract: In this paper we demonstrate a sensor based on a two-dimensional photonic crystal cavity structure. Design, theoretical simulations, fabrication and experiments are shown to illustrate the working principle of this device. Sensitivity of our sensor is determined by observing the shift of resonant wavelength of the photonic crystal cavity as a function of the refractive index variation of the analyte. By experimentally infiltrating solutions of water and ethanol through an elastomeric micro-fluidic channel, we have confirmed that our all-optical sensor achieves a sensitivity of 460 nm/RIU.

116 citations

Journal ArticleDOI
TL;DR: In this article, the air holes of indium-phosphide-based two-dimensional photonic crystals are filled with a liquid monomer and then filled with thermal polymerization.
Abstract: Polymer filling of the air holes of indium-phosphide-based two-dimensional photonic crystals is reported. After infiltration of the holes with a liquid monomer and solidification of the infill in situ by thermal polymerization, complete filling is proven using scanning electron microscopy. Optical transmission measurements of a filled photonic crystal structure exhibit a redshift of the air band, confirming the complete filling.

52 citations

Proceedings ArticleDOI
TL;DR: In this paper, the authors presented various nanofabrication results obtained with direct-write, with scanning helium ion beam lithography, and with helium ion ion beam induced deposition, using the recently introduced helium ion microscope (HIM) for imaging and fabrication of nanostructures.
Abstract: The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe [1,2]. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valuable signal for high-resolution imaging as well as a mechanism for very precise nanofabrication [3]. The low proximity effects, due to the low yield of backscattered ions and the confinement of the forward scattered ions into a narrow cone, enable patterning of ultra-dense sub-10 nm structures. This paper presents various nanofabrication results obtained with direct-write, with scanning helium ion beam lithography, and with helium ion beam induced deposition.

50 citations

Journal ArticleDOI
TL;DR: The observed relatively high growth rates suggest that electronic excitation is the dominant mechanism in helium ion-beam-induced deposition of PtC nanopillars, and Monte Carlo simulations reproduce the current dependences of the vertical and lateral growth rates and of the volumetric deposition efficiency.
Abstract: A 25 keV focused helium ion beam has been used to grow PtC nanopillars on a silicon substrate by beam-induced decomposition of a (CH3)3Pt(CPCH3) precursor gas. The ion beam diameter was about 1 nm. The observed relatively high growth rates suggest that electronic excitation is the dominant mechanism in helium ion-beam-induced deposition. Pillars grown at low beam currents are narrow and have sharp tips. For a constant dose, the pillar height decreases with increasing current, pointing to depletion of precursor molecules at the beam impact site. Furthermore, the diameter increases rapidly and the total pillar volume decreases slowly with increasing current. Monte Carlo simulations have been performed with realistic values for the fundamental deposition processes. The simulation results are in good agreement with experimental observations. In particular, they reproduce the current dependences of the vertical and lateral growth rates and of the volumetric deposition efficiency. Furthermore, the simulations reveal that the vertical pillar growth is due to type-1 secondary electrons and primary ions, while the lateral outgrowth is due to type-2 secondary electrons and scattered ions.

48 citations


Cited by
More filters
Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
TL;DR: In this article, a review of the current status of periodic dielectric nanostructures in photonics is presented, including both recent progress and well-established results, as well as the advantages and limitations of various theoretical and numerical approaches.

394 citations

Journal ArticleDOI
TL;DR: In this article, a range of routes to semiconductor nanowire production have opened up as a result of advances in nanowires fabrication techniques over the last number of decades.
Abstract: Semiconductor nanowires have been the subject of intensive research investment over the past few decades. Their physical properties afford them applications in a vast network of active microelectronic research fields, including logic device scaling in very large scale integrated circuits, sensor devices, and energy harvesting. A range of routes to semiconductor nanowire production have opened up as a result of advances in nanowire fabrication techniques over the last number of decades. These nanowire fabrication routes can usually be categorized into one of two paradigms, bottom-up or top-down. Microelectronic systems typically rely on integrated device platforms, where each device and component thereof can be individually addressed. This requirement for precise addressability places significant demands on the mode of fabrication, specifically with regard to device definition, placement and density, which have typically been strengths of top-down fabrication processes. However, in recent years, advances i...

294 citations

Journal ArticleDOI
TL;DR: Comparison of surface structures of cicada, dragonfly and butterfly wings, shark skin, gecko feet, taro and lotus leaves shows large variations in structure dimension and configuration, indicating that there is no one particular surface structure that exhibits bactericidal behaviour against all types of microorganisms.
Abstract: Orthopaedic and dental implants have become a staple of the medical industry and with an ageing population and growing culture for active lifestyles, this trend is forecast to continue. In accordance with the increased demand for implants, failure rates, particularly those caused by bacterial infection, need to be reduced. The past two decades have led to developments in antibiotics and antibacterial coatings to reduce revision surgery and death rates caused by infection. The limited effectiveness of these approaches has spurred research into nano-textured surfaces, designed to mimic the bactericidal properties of some animal, plant and insect species, and their topographical features. This review discusses the surface structures of cicada, dragonfly and butterfly wings, shark skin, gecko feet, taro and lotus leaves, emphasising the relationship between nano-structures and high surface contact angles on self-cleaning and bactericidal properties. Comparison of these surfaces shows large variations in structure dimension and configuration, indicating that there is no one particular surface structure that exhibits bactericidal behaviour against all types of microorganisms. Recent bio-mimicking fabrication methods are explored, finding hydrothermal synthesis to be the most commonly used technique, due to its environmentally friendly nature and relative simplicity compared to other methods. In addition, current proposed bactericidal mechanisms between bacteria cells and nano-textured surfaces are presented and discussed. These models could be improved by including additional parameters such as biological cell membrane properties, adhesion forces, bacteria dynamics and nano-structure mechanical properties. This paper lastly reviews the mechanical stability and cytotoxicity of micro and nano-structures and materials. While the future of nano-biomaterials is promising, long-term effects of micro and nano-structures in the body must be established before nano-textures can be used on orthopaedic implant surfaces as way of inhibiting bacterial adhesion.

284 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on optical refractive index (RI) sensors with no fluorescent labeling required, and utilize two parameters to characterize and compare the performance of optical RI sensors: sensitivity to RI change (denoted by symbol SRI) and figure of merit (in short, FoM).
Abstract: DOI: 10.1002/adom.201801433 Scientific American selects plasmonic sensing as the top 10 emerging technologies of 2018.[15] Almost every single new plasmonic or photonic structure would be explored to test its sensing ability.[16–29] These works tend to report the sensing performance of their own structure. Some declare that their sensitivity breaks the world record. However, there is still a missing literature on what the world record really is, the gap between the experiments and the theoretical limit, as well as the differences between metal-based plasmonic sensors and dielectric-based photonic sensors. To push plasmonic and photonic sensors into industrial applications, an optical sensing technology map is absolutely necessary. This review aims to cover a wide range of most representative plasmonic and photonic sensors, and place them into a single map. The sensor performances of different structures will be distinctly illustrated. Future researchers could plot the sensing ability of their new sensors into this technology map and gauge their performances in this field. In this review, we focus on optical refractive index (RI) sensors with no fluorescent labeling required. We will utilize two parameters to characterize and compare the performance of optical RI sensors: sensitivity to RI change (denoted by symbol SRI) and figure of merit (in short, FoM). For simplicity, we restrict our discussions to bulk RI change, where the change in RI occurs within the whole sample. There is another case where the RI variation occurs only within a very small volume close to the sensor surface. This surface RI sensitivity is proportional to the bulk RI sensitivity, the ratio of the thickness of the layer within which the surface RI variation occurs, and the penetration depth of the optical mode.[6] The bulk RI sensitivity defines the ratio of the change in sensor output (e.g., resonance angle, intensity, or resonant wavelength) to the bulk RI variations. Here, we limit our discussions to the spectral interrogations and the bulk RI sensitivity SRI is given by[3,5–7,30]

259 citations