scispace - formally typeset
Search or ask a question
Author

H. Wedler

Other affiliations: University of Manchester
Bio: H. Wedler is an academic researcher from University of Greifswald. The author has contributed to research in topics: Gene & Genome. The author has an hindex of 8, co-authored 13 publications receiving 7009 citations. Previous affiliations of H. Wedler include University of Manchester.

Papers
More filters
Journal ArticleDOI
F. Kunst1, Naotake Ogasawara2, Ivan Moszer1, Alessandra M. Albertini3  +151 moreInstitutions (30)
20 Nov 1997-Nature
TL;DR: Bacillus subtilis is the best-characterized member of the Gram-positive bacteria, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.
Abstract: Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family containing 77 putative ATP-binding transport proteins. In addition, a large proportion of the genetic capacity is devoted to the utilization of a variety of carbon sources, including many plant-derived molecules. The identification of five signal peptidase genes, as well as several genes for components of the secretion apparatus, is important given the capacity of Bacillus strains to secrete large amounts of industrially important enzymes. Many of the genes are involved in the synthesis of secondary metabolites, including antibiotics, that are more typically associated with Streptomyces species. The genome contains at least ten prophages or remnants of prophages, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.

3,753 citations

Journal ArticleDOI
Valerie Wood1, R. Gwilliam1, Marie-Adèle Rajandream1, M. Lyne1, Rachel Lyne1, A. Stewart2, J. Sgouros2, N. Peat2, Jacqueline Hayles2, Stephen Baker1, D. Basham1, Sharen Bowman1, Karen Brooks1, D. Brown1, Steve D.M. Brown1, Tracey Chillingworth1, Carol Churcher1, Mark O. Collins1, R. Connor1, Ann Cronin1, P. Davis1, Theresa Feltwell1, Andrew G. Fraser1, S. Gentles1, Arlette Goble1, N. Hamlin1, David Harris1, J. Hidalgo1, Geoffrey M. Hodgson1, S. Holroyd1, T. Hornsby1, S. Howarth1, Elizabeth J. Huckle1, Sarah E. Hunt1, Kay Jagels1, Kylie R. James1, L. Jones1, Matthew Jones1, S. Leather1, S. McDonald1, J. McLean1, P. Mooney1, Sharon Moule1, Karen Mungall1, Lee Murphy1, D. Niblett1, C. Odell1, Karen Oliver1, Susan O'Neil1, D. Pearson1, Michael A. Quail1, Ester Rabbinowitsch1, Kim Rutherford1, Simon Rutter1, David L. Saunders1, Kathy Seeger1, Sarah Sharp1, Jason Skelton1, Mark Simmonds1, R. Squares1, S. Squares1, K. Stevens1, K. Taylor1, Ruth Taylor1, Adrian Tivey1, S. Walsh1, T. Warren1, S. Whitehead1, John Woodward1, Guido Volckaert3, Rita Aert3, Johan Robben3, B. Grymonprez3, I. Weltjens3, E. Vanstreels3, Michael A. Rieger, M. Schafer, S. Muller-Auer, C. Gabel, M. Fuchs, C. Fritzc, E. Holzer, D. Moestl, H. Hilbert, K. Borzym4, I. Langer4, Alfred Beck4, Hans Lehrach4, Richard Reinhardt4, Thomas M. Pohl5, P. Eger5, Wolfgang Zimmermann, H. Wedler, R. Wambutt, Bénédicte Purnelle6, André Goffeau6, Edouard Cadieu7, Stéphane Dréano7, Stéphanie Gloux7, Valerie Lelaure7, Stéphanie Mottier7, Francis Galibert7, Stephen J. Aves8, Z. Xiang8, Cherryl Hunt8, Karen Moore8, S. M. Hurst8, M. Lucas9, M. Rochet9, Claude Gaillardin9, Victor A. Tallada10, Victor A. Tallada11, Andrés Garzón10, Andrés Garzón11, G. Thode10, Rafael R. Daga10, Rafael R. Daga11, L. Cruzado10, Juan Jimenez10, Juan Jimenez11, Miguel del Nogal Sánchez12, F. del Rey12, J. Benito12, Angel Domínguez12, José L. Revuelta12, Sergio Moreno12, John Armstrong13, Susan L. Forsburg14, L. Cerrutti1, Todd M. Lowe15, W. R. McCombie16, Ian T. Paulsen17, Judith A. Potashkin18, G. V. Shpakovski19, David W. Ussery20, Bart Barrell1, Paul Nurse2 
21 Feb 2002-Nature
TL;DR: The genome of fission yeast (Schizosaccharomyces pombe), which contains the smallest number of protein-coding genes yet recorded for a eukaryote, is sequenced and highly conserved genes important for eukARYotic cell organization including those required for the cytoskeleton, compartmentation, cell-cycle control, proteolysis, protein phosphorylation and RNA splicing are identified.
Abstract: We have sequenced and annotated the genome of fission yeast (Schizosaccharomyces pombe), which contains the smallest number of protein-coding genes yet recorded for a eukaryote: 4,824. The centromeres are between 35 and 110 kilobases (kb) and contain related repeats including a highly conserved 1.8-kb element. Regions upstream of genes are longer than in budding yeast (Saccharomyces cerevisiae), possibly reflecting more-extended control regions. Some 43% of the genes contain introns, of which there are 4,730. Fifty genes have significant similarity with human disease genes; half of these are cancer related. We identify highly conserved genes important for eukaryotic cell organization including those required for the cytoskeleton, compartmentation, cell-cycle control, proteolysis, protein phosphorylation and RNA splicing. These genes may have originated with the appearance of eukaryotic life. Few similarly conserved genes that are important for multicellular organization were identified, suggesting that the transition from prokaryotes to eukaryotes required more new genes than did the transition from unicellular to multicellular organization.

1,686 citations

Journal ArticleDOI
TL;DR: Pseudomonas putida is a metabolically versatile saprophytic soil bacterium that has been certified as a biosafety host for the cloning of foreign genes.
Abstract: Pseudomonas putida is a metabolically versatile saprophytic soil bacterium that has been certified as a biosafety host for the cloning of foreign genes. The bacterium also has considerable potential for biotechnological applications. Sequence analysis of the 6.18 Mb genome of strain KT2440 reveals diverse transport and metabolic systems. Although there is a high level of genome conservation with the pathogenic Pseudomonad Pseudomonas aeruginosa (85% of the predicted coding regions are shared), key virulence factors including exotoxin A and type III secretion systems are absent. Analysis of the genome gives insight into the non-pathogenic nature of P. putida and points to potential new applications in agriculture, biocatalysis, bioremediation and bioplastic production.

1,308 citations

Journal ArticleDOI
29 May 1997-Nature
TL;DR: No correlation was found between G+C content and gene density along the chromosome, and their variations are random, so accurate verification procedures demonstrate that there are less than two errors per 10,000 base pairs in the published sequence.
Abstract: Here we report the sequence of 569,202 base pairs of Saccharomyces cerevisiae chromosome V. Analysis of the sequence revealed a centromere, two telomeres and 271 open reading frames (ORFs) plus 13 tRNAs and four small nuclear RNAs. There are two Ty1 transposable elements, each of which contains an ORF (included in the count of 271). Of the ORFs, 78 (29%) are new, 81 (30%) have potential homologues in the public databases, and 112 (41%) are previously characterized yeast genes.

372 citations

Journal ArticleDOI
29 May 1997-Nature
TL;DR: The possible evolutionary origins of this unexpected feature of yeast genome organization, found in cosmid clones from chromosome XIV of the yeast Saccharomyces cerevisiae, are considered.
Abstract: In 1992 we started assembling an ordered library of cosmid clones from chromosome XIV of the yeast Saccharomyces cerevisiae. At that time, only 49 genes were known to be located on this chromosome and we estimated that 80% to 90% of its genes were yet to be discovered. In 1993, a team of 20 European laboratories began the systematic sequence analysis of chromosome XIV. The completed and intensively checked final sequence of 784,328 base pairs was released in April, 1996. Substantial parts had been published before or had previously been made available on request. The sequence contained 419 known or presumptive protein-coding genes, including two pseudogenes and three retrotransposons, 14 tRNA genes, and three small nuclear RNA genes. For 116 (30%) protein-coding sequences, one or more structural homologues were identified elsewhere in the yeast genome. Half of them belong to duplicated groups of 6-14 loosely linked genes, in most cases with conserved gene order and orientation (relaxed interchromosomal synteny). We have considered the possible evolutionary origins of this unexpected feature of yeast genome organization.

80 citations


Cited by
More filters
Journal ArticleDOI
11 Jun 1998-Nature
TL;DR: The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve the understanding of the biology of this slow-growing pathogen and to help the conception of new prophylactic and therapeutic interventions.
Abstract: Countless millions of people have died from tuberculosis, a chronic infectious disease caused by the tubercle bacillus. The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve our understanding of the biology of this slow-growing pathogen and to help the conception of new prophylactic and therapeutic interventions. The genome comprises 4,411,529 base pairs, contains around 4,000 genes, and has a very high guanine + cytosine content that is reflected in the biased amino-acid content of the proteins. M. tuberculosis differs radically from other bacteria in that a very large portion of its coding capacity is devoted to the production of enzymes involved in lipogenesis and lipolysis, and to two new families of glycine-rich proteins with a repetitive structure that may represent a source of antigenic variation.

7,779 citations

Journal ArticleDOI
03 Oct 2002-Nature
TL;DR: The genome sequence of P. falciparum clone 3D7 is reported, which is the most (A + T)-rich genome sequenced to date and is being exploited in the search for new drugs and vaccines to fight malaria.
Abstract: The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host-parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.

4,312 citations

Journal ArticleDOI
31 Aug 2000-Nature
TL;DR: It is proposed that the size and complexity of the P. aeruginosa genome reflect an evolutionary adaptation permitting it to thrive in diverse environments and resist the effects of a variety of antimicrobial substances.
Abstract: Pseudomonas aeruginosa is a ubiquitous environmental bacterium that is one of the top three causes of opportunistic human infections. A major factor in its prominence as a pathogen is its intrinsic resistance to antibiotics and disinfectants. Here we report the complete sequence of P. aeruginosa strain PAO1. At 6.3 million base pairs, this is the largest bacterial genome sequenced, and the sequence provides insights into the basis of the versatility and intrinsic drug resistance of P. aeruginosa. Consistent with its larger genome size and environmental adaptability, P. aeruginosa contains the highest proportion of regulatory genes observed for a bacterial genome and a large number of genes involved in the catabolism, transport and efflux of organic compounds as well as four potential chemotaxis systems. We propose that the size and complexity of the P. aeruginosa genome reflect an evolutionary adaptation permitting it to thrive in diverse environments and resist the effects of a variety of antimicrobial substances.

4,220 citations

Journal ArticleDOI
TL;DR: A major update of the previously developed system for delineation of Clusters of Orthologous Groups of proteins (COGs) from the sequenced genomes of prokaryotes and unicellular eukaryotes is described and is expected to be a useful platform for functional annotation of newlysequenced genomes, including those of complex eukARYotes, and genome-wide evolutionary studies.
Abstract: The availability of multiple, essentially complete genome sequences of prokaryotes and eukaryotes spurred both the demand and the opportunity for the construction of an evolutionary classification of genes from these genomes. Such a classification system based on orthologous relationships between genes appears to be a natural framework for comparative genomics and should facilitate both functional annotation of genomes and large-scale evolutionary studies. We describe here a major update of the previously developed system for delineation of Clusters of Orthologous Groups of proteins (COGs) from the sequenced genomes of prokaryotes and unicellular eukaryotes and the construction of clusters of predicted orthologs for 7 eukaryotic genomes, which we named KOGs after euk aryotic o rthologous g roups. The COG collection currently consists of 138,458 proteins, which form 4873 COGs and comprise 75% of the 185,505 (predicted) proteins encoded in 66 genomes of unicellular organisms. The euk aryotic o rthologous g roups (KOGs) include proteins from 7 eukaryotic genomes: three animals (the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and Homo sapiens), one plant, Arabidopsis thaliana, two fungi (Saccharomyces cerevisiae and Schizosaccharomyces pombe), and the intracellular microsporidian parasite Encephalitozoon cuniculi. The current KOG set consists of 4852 clusters of orthologs, which include 59,838 proteins, or ~54% of the analyzed eukaryotic 110,655 gene products. Compared to the coverage of the prokaryotic genomes with COGs, a considerably smaller fraction of eukaryotic genes could be included into the KOGs; addition of new eukaryotic genomes is expected to result in substantial increase in the coverage of eukaryotic genomes with KOGs. Examination of the phyletic patterns of KOGs reveals a conserved core represented in all analyzed species and consisting of ~20% of the KOG set. This conserved portion of the KOG set is much greater than the ubiquitous portion of the COG set (~1% of the COGs). In part, this difference is probably due to the small number of included eukaryotic genomes, but it could also reflect the relative compactness of eukaryotes as a clade and the greater evolutionary stability of eukaryotic genomes. The updated collection of orthologous protein sets for prokaryotes and eukaryotes is expected to be a useful platform for functional annotation of newly sequenced genomes, including those of complex eukaryotes, and genome-wide evolutionary studies.

4,167 citations

Journal ArticleDOI
16 Jan 2003-Nature
TL;DR: It is found that genes of similar functions are clustered in distinct, multi-megabase regions of individual chromosomes; genes in these regions tend to share transcriptional profiles.
Abstract: A principal challenge currently facing biologists is how to connect the complete DNA sequence of an organism to its development and behaviour. Large-scale targeted-deletions have been successful in defining gene functions in the single-celled yeast Saccharomyces cerevisiae, but comparable analyses have yet to be performed in an animal. Here we describe the use of RNA interference to inhibit the function of ∼86% of the 19,427 predicted genes of C. elegans. We identified mutant phenotypes for 1,722 genes, about two-thirds of which were not previously associated with a phenotype. We find that genes of similar functions are clustered in distinct, multi-megabase regions of individual chromosomes; genes in these regions tend to share transcriptional profiles. Our resulting data set and reusable RNAi library of 16,757 bacterial clones will facilitate systematic analyses of the connections among gene sequence, chromosomal location and gene function in C. elegans.

3,529 citations