scispace - formally typeset
Search or ask a question
Author

Habib Tajalli

Bio: Habib Tajalli is an academic researcher from University of Tabriz. The author has contributed to research in topics: Liquid crystal & Refractive index. The author has an hindex of 23, co-authored 108 publications receiving 1744 citations. Previous affiliations of Habib Tajalli include University of Arizona & University of Insubria.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a scheme for sub-half-wavelength localization of an atom conditioned upon the absorption of a weak probe field at a particular frequency was proposed, where one of the drive fields is a standing-wave field of a cavity.
Abstract: We propose a scheme for subwavelength localization of an atom conditioned upon the absorption of a weak probe field at a particular frequency. Manipulating atom-field interaction on a certain transition by applying drive fields on nearby coupled transitions leads to interesting effects in the absorption spectrum of the weak probe field. We exploit this fact and employ a four-level system with three driving fields and a weak probe field, where one of the drive fields is a standing-wave field of a cavity. We show that the position of an atom along this standing wave is determined when probe-field absorption is measured. We find that absorption of the weak probe field at a certain frequency leads to subwavelength localization of the atom in either of the two half-wavelength regions of the cavity field by appropriate choice of the system parameters. We term this result as sub-half-wavelength localization to contrast it with the usual atom localization result of four peaks spread over one wavelength of the standing wave. We observe two localization peaks in either of the two half-wavelength regions along the cavity axis.

171 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate tunable control of the group velocity of a weak probe pulse from subluminal to superluminous, using an extended ε-Lambda-type system with two extra control fields and an extra energy level.
Abstract: We demonstrate tunable control of the group velocity of a weak probe pulse from subluminal to superluminal. The model is an extended $\ensuremath{\Lambda}$-type system with two extra control fields and an extra energy level. Phase variation of one of the control fields imparts the tunability in the group velocity along with other interesting spectral behavior in the absorption spectrum.

136 citations

Journal ArticleDOI
TL;DR: In this article, the absorption and fluorescence spectra of a highly fluorescent laser dye, Nile red, were investigated in nematic solvents and isotropic liquids as a function of the solvent polarity and type.

89 citations

Journal ArticleDOI
TL;DR: The proposed ECL immunosensor developed for detection of p53 protein offers a considerable potential in early detection of cancer and clinical diagnosis and provides a new platform for biomarker detection.

78 citations

Journal ArticleDOI
TL;DR: The aggregate structures and the nature of the interacting pairs in these dyes were discussed using the exciton theory and the effect of molecular structure of the surfactants on the aggregative behavior of the rhodamine dyes was determined.

74 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The last volume of the Progress in Optics series as discussed by the authors contains seven chapters on widely diverging topics, written by well-known authorities in their fields, including laser selective photophysics and photochemistry, laser phase profile generation, laser beamforming, and laser laser light emission from high-current surface spark discharges.
Abstract: Have you ever felt that the very title, Progress in Optics, conjured an image in your mind? Don’t you see a row of handsomely printed books, bearing the editorial stamp of one of the most brilliant members of the optics community, and chronicling the field of optics since the invention of the laser? If so, you are certain to move the bookend to make room for Volume 16, the latest of this series. It contains seven chapters on widely diverging topics, written by well-known authorities in their fields. These are: 1) Laser Selective Photophysics and Photochemistry by V. S. Letokhov, 2) Recent Advances in Phase Profiles (sic) Generation by J. J. Clair and C. I. Abitbol, 3 ) Computer-Generated Holograms: Techniques and Applications by W.-H. Lee, 4) Speckle Interferometry by A. E. Ennos, 5 ) Deformation Invariant, Space-Variant Optical Pattern Recognition by D. Casasent and D. Psaltis, 6) Light Emission from High-Current Surface-Spark Discharges by R. E. Beverly, and 7) Semiclassical Radiation Theory within a QuantumMechanical Framework by I. R. Senitzkt. The breadth of topic matter spanned by these chapters makes it impossible, for this reviewer at least, to pass judgement on the comprehensiveness, relevance, and completeness of every chapter. With an editorial board as prominent as that of Progress in Optics, however, it seems hardly likely that such comments should be necessary. It should certainly be possible to take the authority of each author as credible. The only remaining judgment to be made on these chapters is their readability. In short, what are they like to read? The first sentence of the first chapter greets the eye with an obvious typographical error: “The creation of coherent laser light source, that have tunable radiation, opened the . . . .” Two pages later we find: “When two types of atoms or molecules of different isotopic composition ( A and B ) have even one spectral line that does not overlap with others, it is pos-

1,071 citations

Journal Article
TL;DR: This work shows that the spectral distribution and time-dependent decay of light emitted from excitons confined in the quantum dots are controlled by the host photonic crystal, providing a basis for all-solid-state dynamic control of optical quantum systems.
Abstract: Control of spontaneously emitted light lies at the heart of quantum optics. It is essential for diverse applications ranging from miniature lasers and light-emitting diodes, to single-photon sources for quantum information, and to solar energy harvesting. To explore such new quantum optics applications, a suitably tailored dielectric environment is required in which the vacuum fluctuations that control spontaneous emission can be manipulated. Photonic crystals provide such an environment: they strongly modify the vacuum fluctuations, causing the decay of emitted light to be accelerated or slowed down, to reveal unusual statistics, or to be completely inhibited in the ideal case of a photonic bandgap. Here we study spontaneous emission from semiconductor quantum dots embedded in inverse opal photonic crystals. We show that the spectral distribution and time-dependent decay of light emitted from excitons confined in the quantum dots are controlled by the host photonic crystal. Modified emission is observed over large frequency bandwidths of 10%, orders of magnitude larger than reported for resonant optical microcavities. Both inhibited and enhanced decay rates are observed depending on the optical emission frequency, and they are controlled by the crystals’ lattice parameter. Our experimental results provide a basis for all-solid-state dynamic control of optical quantum systems.

1,019 citations

Journal ArticleDOI
TL;DR: Recent approaches and advances of EV-based therapies are covered, showing how EVs can potentiate tissue regeneration, participate in immune modulation, and function as potential alternatives to stem cell therapy and bioengineered EVs can act as delivery vehicles for therapeutic agents.
Abstract: Extracellular vesicles (EVs) are nanometer-sized, lipid membrane-enclosed vesicles secreted by most, if not all, cells and contain lipids, proteins, and various nucleic acid species of the source cell. EVs act as important mediators of intercellular communication that influence both physiological and pathological conditions. Given their ability to transfer bioactive components and surmount biological barriers, EVs are increasingly being explored as potential therapeutic agents. EVs can potentiate tissue regeneration, participate in immune modulation, and function as potential alternatives to stem cell therapy, and bioengineered EVs can act as delivery vehicles for therapeutic agents. Here, we cover recent approaches and advances of EV-based therapies.

512 citations

Journal ArticleDOI
TL;DR: Specific focus is placed on the development of new macrocycle hosts since 2010, coupled with considerations of the underlying principles of supramolecular chemistry as well as analytes of interest and common luminophores.
Abstract: There is great need for stand-alone luminescence-based chemosensors that exemplify selectivity, sensitivity, and applicability and that overcome the challenges that arise from complex, real-world media. Discussed herein are recent developments toward these goals in the field of supramolecular luminescent chemosensors, including macrocycles, polymers, and nanomaterials. Specific focus is placed on the development of new macrocycle hosts since 2010, coupled with considerations of the underlying principles of supramolecular chemistry as well as analytes of interest and common luminophores. State-of-the-art developments in the fields of polymer and nanomaterial sensors are also examined, and some remaining unsolved challenges in the area of chemosensors are discussed.

463 citations

Book
01 Apr 1994
TL;DR: In this paper, the authors present a theoretical analysis of the free-carrier theory of the laser and the Coulomb effect in terms of band mixing and strain in Quantum Wells.
Abstract: 1. Semiconductor Laser Diodes 2. Basic Concepts 3. Free-Carrier Theory 4. Coulomb Effects 5. Many-Body Gain 6. Band Mixing and Strain in Quantum Wells 7. Semiclassical laser Theory 8. Multimode Operation 9. Quantum Theory of the Laser 10. Propagation Effects 11. Beyond Quasiequilibrium Theory, Appendices A-e, Index

341 citations