scispace - formally typeset
Search or ask a question
Author

Haeng-Ki Lee

Other affiliations: University of Miami, Chosun University, University of Arkansas  ...read more
Bio: Haeng-Ki Lee is an academic researcher from KAIST. The author has contributed to research in topics: Fly ash & Compressive strength. The author has an hindex of 45, co-authored 251 publications receiving 6513 citations. Previous affiliations of Haeng-Ki Lee include University of Miami & Chosun University.


Papers
More filters
Journal ArticleDOI
Namkon Lee1, Haeng-Ki Lee1
TL;DR: In this paper, a series of tests of the compressive strength, elastic modulus, splitting tensile strength, flow, setting time, and porosity of the alkali-activated fly ash/slag concrete were carried out.

453 citations

Journal ArticleDOI
TL;DR: In this article, the shrinkage characteristics of fly ash/slag and the factors affecting it were investigated and a series of tests were conducted to determine the chemical shrinkage, autogenous shrinkage and drying shrinkage.
Abstract: The purpose of this study is to investigate the shrinkage characteristics of alkali-activated fly ash/slag (henceforth simply AFS) and the factors affecting it. A series of tests were conducted to determine the chemical shrinkage, autogenous shrinkage and drying shrinkage. The microstructures and reaction products were also characterized through XRD and SEM/EDS analyses. An increase in the slag content from 10% to 30% resulted in a denser matrix and showed a higher Ca/Si ratio of C–N–A–S–H in the microstructure. Higher sodium silicate and slag contents in a mixture caused more chemical, autogenous, and drying shrinkage, but led to a higher compressive strength. From the test results, it can be concluded that the autogenous shrinkage of AFS mortar occurs mainly due to self-desiccation in hardened state rather than volume contraction by chemical shrinkage in fresh state. The AFS paste showed higher drying shrinkage than ordinary Portland cement (OPC), which may be caused by the higher mesopore volume of the AFS paste compared to that of OPC paste.

289 citations

Journal ArticleDOI
TL;DR: In this paper, a qualitative analysis using SEM images was carried out to observe the surface morphology and microstructure of cement composites with different amounts of silica fume and CNT addition.

277 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of lightweight aggregates and entrained air on the flow characteristics, density, porosity, compressive strength, and dynamic elastic modulus of the concrete were investigated.

251 citations

Journal ArticleDOI
TL;DR: In this paper, the results of an experimental study carried out to investigate fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers were presented.

237 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Reference EntryDOI
31 Oct 2001
TL;DR: The American Society for Testing and Materials (ASTM) as mentioned in this paper is an independent organization devoted to the development of standards for testing and materials, and is a member of IEEE 802.11.
Abstract: The American Society for Testing and Materials (ASTM) is an independent organization devoted to the development of standards.

3,792 citations

Journal ArticleDOI
TL;DR: A review of the state-of-the-art research in the design and characterization of polymer/carbon based composites as EMI shielding materials can be found in this paper.
Abstract: The extensive development of electronic systems and telecommunications has lead to major concerns regarding electromagnetic pollution. Motivated by environmental questions and by a wide variety of applications, the quest for materials with high efficiency to mitigate electromagnetic interferences (EMI) pollution has become a mainstream field of research. This paper reviews the state-of-the-art research in the design and characterization of polymer/carbon based composites as EMI shielding materials. After a brief introduction, in Section 1, the electromagnetic theory will be briefly discussed in Section 2 setting the foundations of the strategies to be employed to design efficient EMI shielding materials. These materials will be classified in the next section by the type of carbon fillers, involving carbon black, carbon fiber, carbon nanotubes and graphene. The importance of the dispersion method into the polymer matrix (melt-blending, solution processing, etc.) on the final material properties will be discussed. The combination of carbon fillers with other constituents such as metallic nanoparticles or conductive polymers will be the topic of Section 4. The final section will address advanced complex architectures that are currently studied to improve the performances of EMI materials and, in some cases, to impart additional properties such as thermal management and mechanical resistance. In all these studies, we will discuss the efficiency of the composites/devices to absorb and/or reflect the EMI radiation.

949 citations

Journal ArticleDOI
TL;DR: An overview of advances in geopolymers formed by the alkaline activation of aluminosilicates is presented along with opportunities for their use in building construction as mentioned in this paper, with respect to fresh and hardened states, interfacial transition zone between aggregate and geopolymer, bond with steel reinforcing bars and resistance to elevated temperature.

899 citations