scispace - formally typeset
Search or ask a question
Author

HaEun Kim

Bio: HaEun Kim is an academic researcher from Ewha Womans University. The author has contributed to research in topics: Cancer & Epigenetics. The author has an hindex of 2, co-authored 2 publications receiving 9 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Recent evidences on interactions between SSP and epigenetic regulation in cancer may provide an insight on roles and regulation of SSP in cancer metabolism and the potential of serine metabolism for cancer therapy.
Abstract: Cancer metabolism is considered as one of major cancer hallmarks. It is important to understand cancer-specific metabolic changes and its impact on cancer biology to identify therapeutic potentials. Among cancer-specific metabolic changes, a role of serine metabolism has been discovered in various cancer types. Upregulation of serine synthesis pathway (SSP) supports cell proliferation and metastasis. The change of serine metabolism is, in part, mediated by epigenetic modifiers, such as Euchromatic histone-lysine N-methyltransferase 2 and Lysine Demethylase 4C. On the other hand, SSP also influences epigenetic landscape such as methylation status of nucleic acids and histone proteins via affecting S-adenosyl methionine production. In the review, we highlight recent evidences on interactions between SSP and epigenetic regulation in cancer. It may provide an insight on roles and regulation of SSP in cancer metabolism and the potential of serine metabolism for cancer therapy.

13 citations

Journal ArticleDOI
TL;DR: It is demonstrated that EHMT2 inhibition effectively induced cell death in NSCLC cells through altering cholesterol metabolism-dependent autophagy.
Abstract: Non-small cell lung cancer (NSCLC) is a major subtype of lung cancer. Besides genetic and environmental factors, epigenetic alterations contribute to the tumorigenesis of NSCLC. Epigenetic changes are considered key drivers of cancer initiation and progression, and altered expression and activity of epigenetic modifiers reshape the epigenetic landscape in cancer cells. Euchromatic histone-lysine N-methyltransferase 2 (EHMT2) is a histone methyltransferase and catalyzes mono- and di-methylation at histone H3 lysine 9 (H3K9me1 and H3K9me2, respectively), leading to gene silencing. EHMT2 overexpression has been reported in various types of cancer, including ovarian cancer and neuroblastoma, in relation to cell proliferation and metastasis. However, its role in NSCLC is not fully understood. In this study, we showed that EHMT2 gene expression was higher in NSCLC than normal lung tissue based on publicly available data. Inhibition of EHMT2 by BIX01294 (BIX) reduced cell viability of NSCLC cell lines via induction of autophagy. Through RNA sequencing analysis, we found that EHMT2 inhibition significantly affected the cholesterol biosynthesis pathway. BIX treatment directly induced the expression of SREBF2, which is a master regulator of cholesterol biosynthesis, by lowering H3K9me1 and H3K9me2 at the promoter. Treatment of a cholesterol biosynthesis inhibitor, 25-hydroxycholesterol (25-HC), partially recovered BIX-induced cell death by attenuating autophagy. Our data demonstrated that EHMT2 inhibition effectively induced cell death in NSCLC cells through altering cholesterol metabolism-dependent autophagy.

13 citations


Cited by
More filters
Journal ArticleDOI
16 Oct 2020-Cells
TL;DR: This review highlights recent findings on the metabolic phenotypes of cancer and elucidates the interactions between signal transduction pathways and metabolic pathways and provides novel rationales for designing the next-generation cancer metabolism drugs.
Abstract: Aberrant metabolism is a major hallmark of cancer. Abnormal cancer metabolism, such as aerobic glycolysis and increased anabolic pathways, has important roles in tumorigenesis, metastasis, drug resistance, and cancer stem cells. Well-known oncogenic signaling pathways, such as phosphoinositide 3-kinase (PI3K)/AKT, Myc, and Hippo pathway, mediate metabolic gene expression and increase metabolic enzyme activities. Vice versa, deregulated metabolic pathways contribute to defects in cellular signal transduction pathways, which in turn provide energy, building blocks, and redox potentials for unrestrained cancer cell proliferation. Studies and clinical trials are being performed that focus on the inhibition of metabolic enzymes by small molecules or dietary interventions (e.g., fasting, calorie restriction, and intermittent fasting). Similar to genetic heterogeneity, the metabolic phenotypes of cancers are highly heterogeneous. This heterogeneity results from diverse cues in the tumor microenvironment and genetic mutations. Hence, overcoming metabolic plasticity is an important goal of modern cancer therapeutics. This review highlights recent findings on the metabolic phenotypes of cancer and elucidates the interactions between signal transduction pathways and metabolic pathways. We also provide novel rationales for designing the next-generation cancer metabolism drugs.

159 citations

Journal ArticleDOI
TL;DR: The brain has almost no energy reserve, but its activity coordinates organismal function, a burden that requires precise coupling between neurotransmission and energy metabolism, thus requiring innovative therapies to preserve brain energetics.

93 citations

Journal ArticleDOI
TL;DR: The current evidence that is beginning to unravel the roles of L-serine both in the healthy and diseased brain is reviewed, leading to the notion that this specific metabolic pathway connects glial metabolism with synaptic activity and plasticity.

35 citations

Journal ArticleDOI
TL;DR: Based on the regulation of cholesterol homeostasis, many interventions have been developed to lower cholesterol by inhibiting cholesterol biosynthesis and uptake or enhancing cholesterol utilization and excretion as discussed by the authors . But, the benefits of those interventions for the treatment of multiple diseases including atherosclerotic cardiovascular diseases, obesity, diabetes, nonalcoholic fatty liver disease, cancer, neurodegenerative diseases, osteoporosis and virus infection.
Abstract: Abstract Disturbed cholesterol homeostasis plays critical roles in the development of multiple diseases, such as cardiovascular diseases (CVD), neurodegenerative diseases and cancers, particularly the CVD in which the accumulation of lipids (mainly the cholesteryl esters) within macrophage/foam cells underneath the endothelial layer drives the formation of atherosclerotic lesions eventually. More and more studies have shown that lowering cholesterol level, especially low-density lipoprotein cholesterol level, protects cardiovascular system and prevents cardiovascular events effectively. Maintaining cholesterol homeostasis is determined by cholesterol biosynthesis, uptake, efflux, transport, storage, utilization, and/or excretion. All the processes should be precisely controlled by the multiple regulatory pathways. Based on the regulation of cholesterol homeostasis, many interventions have been developed to lower cholesterol by inhibiting cholesterol biosynthesis and uptake or enhancing cholesterol utilization and excretion. Herein, we summarize the historical review and research events, the current understandings of the molecular pathways playing key roles in regulating cholesterol homeostasis, and the cholesterol-lowering interventions in clinics or in preclinical studies as well as new cholesterol-lowering targets and their clinical advances. More importantly, we review and discuss the benefits of those interventions for the treatment of multiple diseases including atherosclerotic cardiovascular diseases, obesity, diabetes, nonalcoholic fatty liver disease, cancer, neurodegenerative diseases, osteoporosis and virus infection.

30 citations