scispace - formally typeset
Search or ask a question
Author

Hai Tao Yuan

Bio: Hai Tao Yuan is an academic researcher from Beth Israel Deaconess Medical Center. The author has contributed to research in topics: Vascular endothelial growth factor A & Vascular endothelial growth factor B. The author has an hindex of 17, co-authored 19 publications receiving 3317 citations. Previous affiliations of Hai Tao Yuan include University College London & St Thomas' Hospital.

Papers
More filters
Journal ArticleDOI
TL;DR: A novel placenta-derived soluble TGF-β coreceptor, endoglin (sEng), which is elevated in the sera of preeclamptic individuals, correlates with disease severity and falls after delivery, suggest that sEng may act in concert with sFlt1 to induce severe preeclampsia.
Abstract: Preeclampsia is a pregnancy-specific hypertensive syndrome that causes substantial maternal and fetal morbidity and mortality. Maternal endothelial dysfunction mediated by excess placenta-derived soluble VEGF receptor 1 (sVEGFR1 or sFlt1) is emerging as a prominent component in disease pathogenesis. We report a novel placenta-derived soluble TGF-beta coreceptor, endoglin (sEng), which is elevated in the sera of preeclamptic individuals, correlates with disease severity and falls after delivery. sEng inhibits formation of capillary tubes in vitro and induces vascular permeability and hypertension in vivo. Its effects in pregnant rats are amplified by coadministration of sFlt1, leading to severe preeclampsia including the HELLP (hemolysis, elevated liver enzymes, low platelets) syndrome and restriction of fetal growth. sEng impairs binding of TGF-beta1 to its receptors and downstream signaling including effects on activation of eNOS and vasodilation, suggesting that sEng leads to dysregulated TGF-beta signaling in the vasculature. Our results suggest that sEng may act in concert with sFlt1 to induce severe preeclampsia.

1,731 citations

Journal ArticleDOI
TL;DR: A critical role is identified in disrupting normal pulmonary endothelial function in sepsis-associated lung injury and excess systemic Ang-2 provokes pulmonary leak and congestion in otherwise healthy adult mice.
Abstract: Background Acute respiratory distress syndrome (ARDS) is a devastating complication of numerous underlying conditions, most notably sepsis. Although pathologic vascular leak has been implicated in the pathogenesis of ARDS and sepsis-associated lung injury, the mechanisms promoting leak are incompletely understood. Angiopoietin-2 (Ang-2), a known antagonist of the endothelial Tie-2 receptor, was originally described as a naturally occurring disruptor of normal embryonic vascular development otherwise mediated by the Tie-2 agonist angiopoietin-1 (Ang-1). We hypothesized that Ang-2 contributes to endothelial barrier disruption in sepsis-associated lung injury, a condition involving the mature vasculature. Methods and Findings We describe complementary human, murine, and in vitro investigations that implicate Ang-2 as a mediator of this process. We show that circulating Ang-2 is significantly elevated in humans with sepsis who have impaired oxygenation. We then show that serum from these patients disrupts endothelial architecture. This effect of sepsis serum from humans correlates with measured Ang-2, abates with clinical improvement, and is reversed by Ang-1. Next, we found that endothelial barrier disruption can be provoked by Ang-2 alone. This signal is transduced through myosin light chain phosphorylation. Last, we show that excess systemic Ang-2 provokes pulmonary leak and congestion in otherwise healthy adult mice. Conclusions Our results identify a critical role for Ang-2 in disrupting normal pulmonary endothelial function.

481 citations

Journal ArticleDOI
TL;DR: Although Ang2 is a weaker agonist than Ang1, endogenous Ang2 maintains a level of Tie2 activation that is critical to a spectrum of EC functions that may reconcile disparate reports of Ang2's effect on Tie2, impact the understanding of endogenous receptor tyrosine kinase signal transduction mechanisms, and affect how Ang2 and Tie2 are targeted under conditions such as sepsis and cancer.
Abstract: Angiopoietin 2 (Ang2) was originally shown to be a competitive antagonist for Ang1 of the receptor tyrosine kinase Tie2 in endothelial cells (ECs). Since then, reports have conflicted on whether Ang2 is an agonist or antagonist of Tie2. Here we show that Ang2 functions as an agonist when Ang1 is absent but as a dose-dependent antagonist when Ang1 is present. Exogenous Ang2 activates Tie2 and the promigratory, prosurvival PI3K/Akt pathway in ECs but with less potency and lower affinity than exogenous Ang1. ECs produce Ang2 but not Ang1. This endogenous Ang2 maintains Tie2, phosphatidylinositol 3-kinase, and Akt activities, and it promotes EC survival, migration, and tube formation. However, when ECs are stimulated with Ang1 and Ang2, Ang2 dose-dependently inhibits Ang1-induced Tie2 phosphorylation, Akt activation, and EC survival. We conclude that Ang2 is both an agonist and an antagonist of Tie2. Although Ang2 is a weaker agonist than Ang1, endogenous Ang2 maintains a level of Tie2 activation that is critical to a spectrum of EC functions. These findings may reconcile disparate reports of Ang2's effect on Tie2, impact our understanding of endogenous receptor tyrosine kinase signal transduction mechanisms, and affect how Ang2 and Tie2 are targeted under conditions such as sepsis and cancer.

337 citations

Journal ArticleDOI
TL;DR: It is speculated that that down-regulation of VEGF-A may be functionally-implicated in the progressive attrition of peritubular capillaries in areas of tubular atrophy and interstitial fibrosis; VEGf-A down- regulation correlates with a loss of HIF-1 alpha expression which itself occurs in the face of increased tissue hypoxia.
Abstract: Although the response of kidneys acutely damaged by ischemia or toxins is dominated by epithelial destruction and regeneration, other studies have begun to define abnormalities in the cell biology of the renal microcirculation, especially with regard to peritubular capillaries. We explored the integrity of peritubular capillaries in relation to expression of vascular endothelial growth factor (VEGF)-A, hypoxia-inducible factor (HIF)-α proteins, and von Hippel-Lindau protein (pVHL) in mouse folic acid nephropathy, a model in which acute tubular damage is followed by partial regeneration and progression to patchy chronic histological damage. Throughout a period of 14 days, in areas of cortical tubular atrophy and interstitial fibrosis, loss of VEGFR-2 and platelet endothelial cell adhesion molecule-expressing peritubular capillaries was preceded by marked decreases in VEGF-A transcript and protein levels. Nephrotoxicity was associated with tissue hypoxia, especially in regenerating tubules, as assessed by an established in situ method. Despite the hypoxia, levels of HIF-1α, a protein known to up-regulate VEGF-A, were reduced. During the course of nephrotoxicity, levels of pVHL, a factor that destabilizes HIF-1α, increased significantly. We speculate that that down-regulation of VEGF-A may be functionally-implicated in the progressive attrition of peritubular capillaries in areas of tubular atrophy and interstitial fibrosis; VEGF-A down-regulation correlates with a loss of HIF-1α expression which itself occurs in the face of increased tissue hypoxia.

134 citations

Journal ArticleDOI
TL;DR: It is shown that a main role for Tiel is to modulate blood vessel morphogenesis by virtue of its ability to down‐regulate Tie2‐driven signaling and endothelial survival.
Abstract: A critical role for Tie1, an orphan endothelial receptor, in blood vessel morphogenesis has emerged from mutant mouse studies. Moreover, it was recently demonstrated that certain angiopoietin (Ang) family members can activate Tie1. We report here that Ang1 induces Tie1 phosphorylation in endothelial cells. Tie1 phosphorylation was, however, Tie2 dependent because 1) Ang1 failed to induce Tie1 phosphorylation when Tie2 was down-regulated in endothelial cells; 2) Tie1 phosphorylation was induced in the absence of Ang1 by either a constitutively active form of Tie2 or a Tie2 agonistic antibody; 3) in HEK 293 cells Ang1 phosphorylated a form of Tie1 without kinase activity when coexpressed with Tie2, and Ang1 failed to phosphorylate Tie1 when coexpressed with kinase-defective Tie2. Ang1-mediated AKT and 42/44MAPK phosphorylation is predominantly Tie2 mediated, and Tie1 down-regulates this pathway. Finally, based on a battery of in vitro and in vivo data, we show that a main role for Tie1 is to modulate blood vessel morphogenesis by virtue of its ability to down-regulate Tie2-driven signaling and endothelial survival. Our new observations help to explain why Tie1 null embryos have increased capillary densities in several organ systems. The experiments also constitute a paradigm for how endothelial integrity is fine-tuned by the interplay between closely related receptors by a single growth factor.

117 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Three unique and highly compartmentalized mammalian superoxide dismutases have been biochemically and molecularly characterized to date and a molecular understanding of each of these genes has proven useful toward the deciphering of their biological roles.

1,870 citations

Journal ArticleDOI
TL;DR: Rising circulating levels of soluble endoglin and ratios of sFlt1:PlGF herald the onset of preeclampsia, which was greatest among women in the highest quartile of the control distributions for both biomarkers but not for either biomarker alone.
Abstract: Background Alterations in circulating soluble fms-like tyrosine kinase 1 (sFlt1), an antiangiogenic protein, and placental growth factor (PlGF), a proangiogenic protein, appear to be involved in th...

1,641 citations

Journal ArticleDOI
TL;DR: It is shown that dNK cells, but not peripheral blood–derived NK subsets, regulate trophoblast invasion both in vitro and in vivo by production of the interleukin-8 and interferon-inducible protein–10 chemokines.
Abstract: Human CD56(bright) NK cells accumulate in the maternal decidua during pregnancy and are found in direct contact with fetal trophoblasts. Several mechanisms have been proposed to explain the inability of NK cells to kill the semiallogeneic fetal cells. However, the actual functions of decidual NK (dNK) cells during pregnancy are mostly unknown. Here we show that dNK cells, but not peripheral blood-derived NK subsets, regulate trophoblast invasion both in vitro and in vivo by production of the interleukin-8 and interferon-inducible protein-10 chemokines. Furthermore, dNK cells are potent secretors of an array of angiogenic factors and induce vascular growth in the decidua. Notably, such functions are regulated by specific interactions between dNK-activating and dNK-inhibitory receptors and their ligands, uniquely expressed at the fetal-maternal interface. The overall results support a 'peaceful' model for reproductive immunology, in which elements of innate immunity have been incorporated in a constructive manner to support reproductive tissue development.

1,489 citations

Journal ArticleDOI
TL;DR: This review integrates recent physiological and molecular understanding of the role of podocytes during the maintenance and failure of the glomerular filtration barrier with hereditary nephrotic syndromes identified over the last 2 years.
Abstract: Glomerular podocytes are highly specialized cells with a complex cytoarchitecture. Their most prominent features are interdigitated foot processes with filtration slits in between. These are bridged by the slit diaphragm, which plays a major role in establishing the selective permeability of the glomerular filtration barrier. Injury to podocytes leads to proteinuria, a hallmark of most glomerular diseases. New technical approaches have led to a considerable increase in our understanding of podocyte biology including protein inventory, composition and arrangement of the cytoskeleton, receptor equipment, and signaling pathways involved in the control of ultrafiltration. Moreover, disturbances of podocyte architecture resulting in the retraction of foot processes and proteinuria appear to be a common theme in the progression of acquired glomerular disease. In hereditary nephrotic syndromes identified over the last 2 years, all mutated gene products were localized in podocytes. This review integrates our recent physiological and molecular understanding of the role of podocytes during the maintenance and failure of the glomerular filtration barrier.

1,358 citations

Journal ArticleDOI
TL;DR: The Tie receptors and their angiopoietin (Ang) ligands have been identified as the second vascular tissue-specific receptor Tyr kinase system and provide unique insights into the functions of this vascular signalling system.
Abstract: Angiogenesis, the growth of blood vessels, is a fundamental biological process that controls embryonic development and is also involved in numerous life-threatening human diseases. Much work in the field of angiogenesis research has centred on the vascular endothelial growth factor (VEGF)-VEGF receptor system. The Tie receptors and their angiopoietin (Ang) ligands have been identified as the second vascular tissue-specific receptor Tyr kinase system. Ang-Tie signalling is essential during embryonic vessel assembly and maturation, and functions as a key regulator of adult vascular homeostasis. The structural characteristics and the spatio-temporal regulation of the expression of receptors and ligands provide unique insights into the functions of this vascular signalling system.

1,255 citations