scispace - formally typeset
Search or ask a question
Author

Haifeng Pu

Bio: Haifeng Pu is an academic researcher from Northwestern University. The author has contributed to research in topics: Enhancer & Reporter gene. The author has an hindex of 2, co-authored 2 publications receiving 3774 citations.

Papers
More filters
Journal ArticleDOI
17 Jun 1994-Science
TL;DR: In this article, the authors found that mutations of human Cu,Zn superoxide dismutase (SOD) contribute to the pathogenesis of familial amyotrophic lateral sclerosis (ALS).
Abstract: Mutations of human Cu,Zn superoxide dismutase (SOD) are found in about 20 percent of patients with familial amyotrophic lateral sclerosis (ALS). Expression of high levels of human SOD containing a substitution of glycine to alanine at position 93--a change that has little effect on enzyme activity--caused motor neuron disease in transgenic mice. The mice became paralyzed in one or more limbs as a result of motor neuron loss from the spinal cord and died by 5 to 6 months of age. The results show that dominant, gain-of-function mutations in SOD contribute to the pathogenesis of familial ALS.

3,958 citations

Journal ArticleDOI
TL;DR: Results indicate that regulation of the ChAT gene is achieved by a combination of both positive and negative regulatory mechanisms whose interaction determines the expression of a cholinergic neuronal phenotype.

22 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Current evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion, which is presented in detail in this review.
Abstract: The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.

5,514 citations

Journal ArticleDOI
TL;DR: The rapid diffusion of nitric oxide between cells allows it to locally integrate the responses of blood vessels to turbulence, modulate synaptic plasticity in neurons, and control the oscillatory behavior of neuronal networks.
Abstract: Nitric oxide contrasts with most intercellular messengers because it diffuses rapidly and isotropically through most tissues with little reaction but cannot be transported through the vasculature due to rapid destruction by oxyhemoglobin. The rapid diffusion of nitric oxide between cells allows it to locally integrate the responses of blood vessels to turbulence, modulate synaptic plasticity in neurons, and control the oscillatory behavior of neuronal networks. Nitric oxide is not necessarily short lived and is intrinsically no more reactive than oxygen. The reactivity of nitric oxide per se has been greatly overestimated in vitro because no drain is provided to remove nitric oxide. Nitric oxide persists in solution for several minutes in micromolar concentrations before it reacts with oxygen to form much stronger oxidants like nitrogen dioxide. Nitric oxide is removed within seconds in vivo by diffusion over 100 microns through tissues to enter red blood cells and react with oxyhemoglobin. The direct toxicity of nitric oxide is modest but is greatly enhanced by reacting with superoxide to form peroxynitrite (ONOO-). Nitric oxide is the only biological molecule produced in high enough concentrations to out-compete superoxide dismutase for superoxide. Peroxynitrite reacts relatively slowly with most biological molecules, making peroxynitrite a selective oxidant. Peroxynitrite modifies tyrosine in proteins to create nitrotyrosines, leaving a footprint detectable in vivo. Nitration of structural proteins, including neurofilaments and actin, can disrupt filament assembly with major pathological consequences. Antibodies to nitrotyrosine have revealed nitration in human atherosclerosis, myocardial ischemia, septic and distressed lung, inflammatory bowel disease, and amyotrophic lateral sclerosis.

5,370 citations

Journal ArticleDOI
TL;DR: Oxidative stress has been implicated in the progression of Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis and different strategies, including novel metal–protein attenuating compounds aimed at a variety of targets have shown promise in clinical studies.
Abstract: Oxidative stress has been implicated in the progression of Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Oxygen is vital for life but is also potentially dangerous, and a complex system of checks and balances exists for utilizing this essential element. Oxidative stress is the result of an imbalance in pro-oxidant/antioxidant homeostasis that leads to the generation of toxic reactive oxygen species. The systems in place to cope with the biochemistry of oxygen are complex, and many questions about the mechanisms of oxygen regulation remain unanswered. However, this same complexity provides a number of therapeutic targets, and different strategies, including novel metal-protein attenuating compounds, aimed at a variety of targets have shown promise in clinical studies.

3,376 citations

Journal ArticleDOI
15 Jun 2017-Cell
TL;DR: A novel microglia type associated with neurodegenerative diseases (DAM) is described and it is revealed that the DAM program is activated in a two-step process that involves downregulation of microglian checkpoints, followed by activation of a Trem2-dependent program.

2,854 citations

Journal ArticleDOI
21 Mar 2008-Science
TL;DR: The evidence suggests a pathophysiological link between TDP-43 and ALS, and neighboring mutations in a highly conserved region of TARDBP in sporadic and familial ALS cases.
Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder characterized pathologically by ubiquitinated TAR DNA binding protein (TDP-43) inclusions. The function of TDP-43 in the nervous system is uncertain, and a mechanistic role in neurodegeneration remains speculative. We identified neighboring mutations in a highly conserved region of TARDBP in sporadic and familial ALS cases. TARDBPM337V segregated with disease within one kindred and a genome-wide scan confirmed that linkage was restricted to chromosome 1p36, which contains the TARDBP locus. Mutant forms of TDP-43 fragmented in vitro more readily than wild type and, in vivo, caused neural apoptosis and developmental delay in the chick embryo. Our evidence suggests a pathophysiological link between TDP-43 and ALS.

2,425 citations