scispace - formally typeset
Search or ask a question
Author

Haijie Han

Other affiliations: Tianjin University
Bio: Haijie Han is an academic researcher from Zhejiang University. The author has contributed to research in topics: Medicine & Prodrug. The author has an hindex of 21, co-authored 34 publications receiving 1129 citations. Previous affiliations of Haijie Han include Tianjin University.

Papers
More filters
Journal ArticleDOI
17 Jan 2017-ACS Nano
TL;DR: The proposed mechanism of the dual enzymatic reaction-assisted GEM delivery system was fully investigated both in vitro and in vivo, and could achieve prolonged circulation time while maintaining enhanced cellular internalization and effective drug release.
Abstract: Dual enzymatic reactions were introduced to fabricate programmed gemcitabine (GEM) nanovectors for targeted pancreatic cancer therapy. Dual-enzyme-sensitive GEM nanovectors were prepared by conjugation of matrix metalloproteinase-9 (MMP-9) detachable poly(ethylene glycol) (PEG), cathepsin B-cleavable GEM, and targeting ligand CycloRGD to CdSe/ZnS quantum dots (QDs). The GEM nanovectors decorated with a PEG corona could avoid nonspecific interactions and exhibit prolonged blood circulation time. After GEM nanovectors were accumulated in tumor tissue by the enhanced permeability and retention (EPR) effect, the PEG corona can be removed by overexpressed MMP-9 in tumor tissue and RGD would be exposed, which was capable of facilitating cellular internalization. Once internalized into pancreatic cancer cells, the elevated lysosomal cathepsin B could further promote the release of GEM. By employing dual enzymatic reactions, the GEM nanovectors could achieve prolonged circulation time while maintaining enhanced c...

147 citations

Journal ArticleDOI
06 Jan 2021-ACS Nano
TL;DR: In this paper, a dopamine-triggered gelation (DTG) strategy was proposed for fabricating mussel-inspired, transparent, and conductive hydrogels, which leverages on the dual functions of dopamine, which serves as both polymerization initiator and dynamic mediator to elaborate and orchestrate the cross-linking networks.
Abstract: Mussel-inspired conductive hydrogels are attractive for the development of next-generation self-adhesive, flexible skinlike sensors. However, despite extensive progress, there are still some daunting challenges that hinder their applications, such as inferior optical transparency, low catechol content (e.g., poor adhesion), as well as limited sensation performances. Here, we report a dopamine-triggered gelation (DTG) strategy for fabricating mussel-inspired, transparent, and conductive hydrogels. The DTG design leverages on the dual functions of dopamine, which serves as both polymerization initiator and dynamic mediator to elaborate and orchestrate the cross-linking networks of hydrogels, allowing for pronounced adhesion, robust elasticity, self-healing ability, excellent injectability and three-dimensional printability, reversible and tunable transparent-opaque transition, and thermoresponsive feature. These preferable performances enable DTG hydrogels as self-adhesive, flexible skinlike sensors for achieving multiple sensations toward pressure, strain, and temperature, even an extraordinary visual perception effect, making it a step closer in the exploration of future biomimetic skin.

143 citations

Journal ArticleDOI
TL;DR: A remarkably improved therapeutic efficacy was well exempli-fied the novel cascade treatment for pancreatic cancer and the innovative use of metformin.
Abstract: Pancreatic ductal adenocarcinoma, as one of the most aggressive cancers, is characterized by rich desmoplastic stroma that forms a physical barrier for anticancer drugs. To address this issue, we herein report a two-step sequential delivery strategy for targeted therapy of pancreatic cancer with gemcitabine (GEM). In this sequential strategy, metformin (MET) was first administrated to disrupt the dense stroma, based on the fact that MET downregulated the expression of fibrogenic cytokine TGF-β to suppress the activity of pancreatic stellate cells (PSCs), through the 5'-adenosine monophosphate-activated protein kinase pathway of PANC-1 pancreatic cancer cells. In consequence, the PSC-mediated desmoplastic reactions generating α-smooth muscle actin and collagen were inhibited, which promoted the delivery of GEM and pH (low) insertion peptide (pHLIP) comodified magnetic nanoparticles (denoted as GEM-MNP-pHLIP). In addition, pHLIP largely increased the binding affinity of the nanodrug to PANC-1 cells. The targeted delivery and effective accumulation of MET/GEM-MNP-pHLIP in vivo were confirmed by magnetic resonance imaging enhanced by the underlying magnetic nanoparticles. The tumor growth inhibition of the sequential MET and GEM-MNP-pHLIP treatment were investigated on both subcutaneous and orthotopic tumor mice models. A remarkably improved therapeutic efficacy, for example, up to 91.2% growth inhibition ratio over 30 d of treatment, well-exemplified the novel cascade treatment for pancreatic cancer and the innovative use of MET.

132 citations

Journal ArticleDOI
Yangjun Chen1, Zuhong Li1, Haibo Wang1, Yin Wang1, Haijie Han1, Qiao Jin1, Jian Ji1 
TL;DR: Higher accumulation of PMDPC-IR-780 than that of free IR-780 in tumor tissue was verified, which might be ascribed to the enhanced permeability and retention (EPR) effect and long circulation time benefiting from the zwitterionic phosphorylcholine surface, which could have great potential for cancer theranostics.
Abstract: IR-780 iodide, a near-infrared (near-IR) fluorescent dye, can be utilized as an effective theranostic agent for both imaging and photothermal therapy. However, its lipophilicity limits its further biomedical applications. Herein, we synthesized a phospholipid mimicking amphiphilic homopolymer poly(12-(methacryloyloxy)dodecyl phosphorylcholine) (PMDPC) via reversible addition–fragmentation chain transfer (RAFT) polymerization. The amphiphilic homopolymer PMDPC can be self-assembled into micelles and used for the encapsulation of IR-780. The IR-780 loaded micelles (PMDPC-IR-780) exhibited low cytotoxicity in the dark, whereas remarkable photothermal cytotoxicity to pancreatic cancer cells (BxPC-3) was observed upon near-IR laser irradiation. We further investigated in vivo biodistribution of PMDPC-IR-780 micelles. Higher accumulation of PMDPC-IR-780 than that of free IR-780 in tumor tissue was verified, which might be ascribed to the enhanced permeability and retention (EPR) effect and long circulation time...

108 citations

Journal ArticleDOI
01 May 2016-Small
TL;DR: These results demonstrate that the well-designed IR-780 loaded polymeric prodrug micelles for hyperthermia-assisted site-specific chemotherapy present an effective approach to reverse drug resistance.
Abstract: Despite the exciting advances in cancer chemotherapy over past decades, drug resistance in cancer treatment remains one of the primary reasons for therapeutic failure. IR-780 loaded pH-responsive polymeric prodrug micelles with near infrared (NIR) photothermal effect are developed to circumvent the drug resistance in cancer treatment. The polymeric prodrug micelles are stable in physiological environment, while exhibit fast doxorubicin (DOX) release in acidic condition and significant temperature elevation under NIR laser irradiation. Phosphorylcholine-based biomimetic micellar shell and acid-sensitive drug conjugation endow them with prolonged circulation time and reduced premature drug release during circulation to conduct tumor site-specific chemotherapy. The polymeric prodrug micelles combined with NIR laser irradiation could significantly enhance intracellular DOX accumulation and synergistically induce the cell apoptosis in DOX-resistant MCF-7/ADR cells. Meanwhile, the tumor site-specific chemotherapy combined with hyperthermia effect induces significant inhibition of MCF-7/ADR tumor growth in tumor-bearing mice. These results demonstrate that the well-designed IR-780 loaded polymeric prodrug micelles for hyperthermia-assisted site-specific chemotherapy present an effective approach to reverse drug resistance.

98 citations


Cited by
More filters
01 Jun 2005

3,154 citations

Journal ArticleDOI
TL;DR: In this review, state-of-the-art studies concerning recent advances in nanotechnology-mediated multimodal synergistic therapy will be systematically discussed, with an emphasis on the construction of multifunctional nanomaterials for realizing bimodal and trimodal synergy therapy.
Abstract: The complexity, diversity, and heterogeneity of tumors seriously undermine the therapeutic potential of treatment. Therefore, the current trend in clinical research has gradually shifted from a focus on monotherapy to combination therapy for enhanced treatment efficacy. More importantly, the cooperative enhancement interactions between several types of monotherapy contribute to the naissance of multimodal synergistic therapy, which results in remarkable superadditive (namely “1 + 1 > 2”) effects, stronger than any single therapy or their theoretical combination. In this review, state-of-the-art studies concerning recent advances in nanotechnology-mediated multimodal synergistic therapy will be systematically discussed, with an emphasis on the construction of multifunctional nanomaterials for realizing bimodal and trimodal synergistic therapy as well as the intensive exploration of the underlying synergistic mechanisms for explaining the significant improvements in synergistic therapeutic outcome. Furtherm...

1,220 citations