scispace - formally typeset
Search or ask a question
Author

Haijun Liu

Bio: Haijun Liu is an academic researcher from Temple University. The author has contributed to research in topics: Evapotranspiration & Irrigation. The author has an hindex of 42, co-authored 204 publications receiving 6164 citations. Previous affiliations of Haijun Liu include University of Washington & University of Electronic Science and Technology of China.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors proposed a conceptually simple and intuitive learning objective function, i.e., additive margin softmax, for face verification, which is more intuitive and interpretable.
Abstract: In this letter, we propose a conceptually simple and intuitive learning objective function, i.e., additive margin softmax, for face verification. In general, face verification tasks can be viewed as metric learning problems, even though lots of face verification models are trained in classification schemes. It is possible when a large-margin strategy is introduced into the classification model to encourage intraclass variance minimization. As one alternative, angular softmax has been proposed to incorporate the margin. In this letter, we introduce another kind of margin to the softmax loss function, which is more intuitive and interpretable. Experiments on LFW and MegaFace show that our algorithm performs better when the evaluation criteria are designed for very low false alarm rate.

936 citations

Journal ArticleDOI
TL;DR: A comprehensive study of maize metabolism, combining genetic, metabolite and expression profiling methodologies to dissect the genetic basis of metabolic diversity in maize kernels, finds metabolite features associated with kernel weight could be used as biomarkers to facilitate genetic improvement of maize.
Abstract: Plants produce a variety of metabolites that have a critical role in growth and development. Here we present a comprehensive study of maize metabolism, combining genetic, metabolite and expression profiling methodologies to dissect the genetic basis of metabolic diversity in maize kernels. We quantify 983 metabolite features in 702 maize genotypes planted at multiple locations. We identify 1,459 significant locus-trait associations (P≤1.8 × 10(-6)) across three environments through metabolite-based genome-wide association mapping. Most (58.5%) of the identified loci are supported by expression QTLs, and some (14.7%) are validated through linkage mapping. Re-sequencing and candidate gene association analysis identifies potential causal variants for five candidate genes involved in metabolic traits. Two of these genes were further validated by mutant and transgenic analysis. Metabolite features associated with kernel weight could be used as biomarkers to facilitate genetic improvement of maize.

376 citations

Proceedings Article
01 Jan 2018
TL;DR: A conceptually simple and intuitive learning objective function, i.e., additive margin softmax, for face verification, which performs better when the evaluation criteria are designed for very low false alarm rate.
Abstract: In this letter, we propose a conceptually simple and intuitive learning objective function, i.e., additive margin softmax, for face verification. In general, face verification tasks can be viewed as metric learning problems, even though lots of face verification models are trained in classification schemes. It is possible when a large-margin strategy is introduced into the classification model to encourage intraclass variance minimization. As one alternative, angular softmax has been proposed to incorporate the margin. In this letter, we introduce another kind of margin to the softmax loss function, which is more intuitive and interpretable. Experiments on LFW and MegaFace show that our algorithm performs better when the evaluation criteria are designed for very low false alarm rate.

317 citations

Journal ArticleDOI
29 Nov 2013-Science
TL;DR: In vivo protein cross-linking, mass spectrometry, and time-resolved spectroscopy indicates that the megacomplex is organized to facilitate energy transfer but not intercomplex electron transfer, which requires diffusible intermediates and the cytochrome b6f complex.
Abstract: In photosynthetic organisms, photons are captured by light-harvesting antenna complexes, and energy is transferred to reaction centers where photochemical reactions take place. We describe here the isolation and characterization of a fully functional megacomplex composed of a phycobilisome antenna complex and photosystems I and II from the cyanobacterium Synechocystis PCC 6803. A combination of in vivo protein cross-linking, mass spectrometry, and time-resolved spectroscopy indicates that the megacomplex is organized to facilitate energy transfer but not intercomplex electron transfer, which requires diffusible intermediates and the cytochrome b6f complex. The organization provides a basis for understanding how phycobilisomes transfer excitation energy to reaction centers and how the energy balance of two photosystems is achieved, allowing the organism to adapt to varying ecophysiological conditions.

304 citations

Journal ArticleDOI
TL;DR: Sequential fine mapping and transgenic complementation demonstrated that ZmWAK is the gene within qHSR1 conferring quantitative resistance to maize head smut and the molecular mechanism of q HSR1-mediated resistance was reported.
Abstract: Head smut is a systemic disease in maize caused by the soil-borne fungus Sporisorium reilianum that poses a grave threat to maize production worldwide. A major head smut quantitative resistance locus, qHSR1, has been detected on maize chromosome bin2.09. Here we report the map-based cloning of qHSR1 and the molecular mechanism of qHSR1-mediated resistance. Sequential fine mapping and transgenic complementation demonstrated that ZmWAK is the gene within qHSR1 conferring quantitative resistance to maize head smut. ZmWAK spans the plasma membrane, potentially serving as a receptor-like kinase to perceive and transduce extracellular signals. ZmWAK was highly expressed in the mesocotyl of seedlings where it arrested biotrophic growth of the endophytic S. reilianum. Impaired expression in the mesocotyl compromised ZmWAK-mediated resistance. Deletion of the ZmWAK locus appears to have occurred after domestication and spread among maize germplasm, and the ZmWAK kinase domain underwent functional constraints during maize evolution.

272 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Proceedings ArticleDOI
15 Jun 2019
TL;DR: This paper presents arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks, and shows that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead.
Abstract: One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for large-scale face recognition is the design of appropriate loss functions that can enhance the discriminative power. Centre loss penalises the distance between deep features and their corresponding class centres in the Euclidean space to achieve intra-class compactness. SphereFace assumes that the linear transformation matrix in the last fully connected layer can be used as a representation of the class centres in the angular space and therefore penalises the angles between deep features and their corresponding weights in a multiplicative way. Recently, a popular line of research is to incorporate margins in well-established loss functions in order to maximise face class separability. In this paper, we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition. The proposed ArcFace has a clear geometric interpretation due to its exact correspondence to geodesic distance on a hypersphere. We present arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks which includes a new large-scale image database with trillions of pairs and a large-scale video dataset. We show that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead. To facilitate future research, the code has been made available.

4,312 citations

Journal ArticleDOI
TL;DR: By completely re-implementing the MetaboAnalyst suite using the latest web framework technologies, the server has been able to substantially improve its performance, capacity and user interactivity.
Abstract: MetaboAnalyst (www.metaboanalyst.ca) is a web server designed to permit comprehensive metabolomic data analysis, visualization and interpretation. It supports a wide range of complex statistical calculations and high quality graphical rendering functions that require significant computational resources. First introduced in 2009, MetaboAnalyst has experienced more than a 50X growth in user traffic (>50 000 jobs processed each month). In order to keep up with the rapidly increasing computational demands and a growing number of requests to support translational and systems biology applications, we performed a substantial rewrite and major feature upgrade of the server. The result is MetaboAnalyst 3.0. By completely re-implementing the MetaboAnalyst suite using the latest web framework technologies, we have been able substantially improve its performance, capacity and user interactivity. Three new modules have also been added including: (i) a module for biomarker analysis based on the calculation of receiver operating characteristic curves; (ii) a module for sample size estimation and power analysis for improved planning of metabolomics studies and (iii) a module to support integrative pathway analysis for both genes and metabolites. In addition, popular features found in existing modules have been significantly enhanced by upgrading the graphical output, expanding the compound libraries and by adding support for more diverse organisms.

2,404 citations

Journal ArticleDOI
TL;DR: In this article, a review of the design and properties of active acoustic metamaterials can be found, as well as an overview of future directions in the field of sound manipulation.
Abstract: Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales. The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create effective material properties that are not possible with passive structures and have led to the development of dynamically reconfigurable, loss-compensating and parity–time-symmetric materials for sound manipulation. Challenges remain, including the development of efficient techniques for fabricating large-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview of future directions in the field. Acoustic metamaterials can be used manipulate sound waves with a high degree of control. Their applications include acoustic imaging and cloaking. This Review outlines the designs and properties of these materials, discussing transformation acoustics theory, anisotropic materials and active acoustic metamaterials.

1,299 citations