scispace - formally typeset
Search or ask a question
Author

Hainan Zhao

Bio: Hainan Zhao is an academic researcher from Michigan State University. The author has contributed to research in topics: Genome & Gene. The author has an hindex of 17, co-authored 29 publications receiving 1717 citations. Previous affiliations of Hainan Zhao include China Agricultural University & University of Wisconsin-Madison.
Topics: Genome, Gene, Chromosome, Centromere, Chromatin

Papers
More filters
Journal ArticleDOI
TL;DR: More than 1,000,000 SNPs, 30,000 indel polymorphisms and 101 low-sequence-diversity chromosomal intervals in the maize genome are uncovered, including the parents of the most productive commercial hybrid in China.
Abstract: We have resequenced a group of six elite maize inbred lines, including the parents of the most productive commercial hybrid in China. This effort uncovered more than 1,000,000 SNPs, 30,000 indel polymorphisms and 101 low-sequence-diversity chromosomal intervals in the maize genome. We also identified several hundred complete genes that show presence/absence variation among these resequenced lines. We discuss the potential roles of complementation of presence/absence variations and other deleterious mutations in contributing to heterosis. High-density SNP and indel polymorphism markers reported here are expected to be a valuable resource for future genetic studies and the molecular breeding of this important crop.

457 citations

Journal ArticleDOI
TL;DR: The sequencing of 278 temperate maize inbred lines from different stages of breeding history, including deep resequencing of 4 lines with known pedigree information, shows that modern breeding has introduced highly dynamic genetic changes into the maize genome.
Abstract: The success of modern maize breeding has been demonstrated by remarkable increases in productivity over the last four decades. However, the underlying genetic changes correlated with these gains remain largely unknown. We report here the sequencing of 278 temperate maize inbred lines from different stages of breeding history, including deep resequencing of 4 lines with known pedigree information. The results show that modern breeding has introduced highly dynamic genetic changes into the maize genome. Artificial selection has affected thousands of targets, including genes and non-genic regions, leading to a reduction in nucleotide diversity and an increase in the proportion of rare alleles. Genetic changes during breeding happen rapidly, with extensive variation (SNPs, indels and copy-number variants (CNVs)) occurring, even within identity-by-descent regions. Our genome-wide assessment of genetic changes during modern maize breeding provides new strategies as well as practical targets for future crop breeding and biotechnology.

321 citations

Journal ArticleDOI
TL;DR: The de novo genome assembly of maize line Mo17 and comparative analysis with other sequenced maize lines show extensive gene-order variations, which should have implications for heterosis and genome evolution.
Abstract: Maize is an important crop with a high level of genome diversity and heterosis. The genome sequence of a typical female line, B73, was previously released. Here, we report a de novo genome assembly of a corresponding male representative line, Mo17. More than 96.4% of the 2,183 Mb assembled genome can be accounted for by 362 scaffolds in ten pseudochromosomes with 38,620 annotated protein-coding genes. Comparative analysis revealed large gene-order and gene structural variations: approximately 10% of the annotated genes were mutually nonsyntenic, and more than 20% of the predicted genes had either large-effect mutations or large structural variations, which might cause considerable protein divergence between the two inbred lines. Our study provides a high-quality reference-genome sequence of an important maize germplasm, and the intraspecific gene order and gene structural variations identified should have implications for heterosis and genome evolution. The de novo genome assembly of maize line Mo17 and comparative analysis with other sequenced maize lines show extensive gene-order variations. This study provides insights into maize evolution and has implications for improving maize hybrid lines.

302 citations

Journal ArticleDOI
TL;DR: This study indicates highly extensive and complex regulation of genetic imprinting in maize endosperm, a mechanism that can potentially function in the balancing of the gene dosage of this triploid tissue.
Abstract: Although genetic imprinting was discovered in maize 40 years ago, its exact extent in the triploid endosperm remains unknown. Here, we have analyzed global patterns of allelic gene expression in developing maize endosperms from reciprocal crosses between inbreds B73 and Mo17. We have defined an imprinted gene as one in which the relative expression of the maternal and paternal alleles differ at least fivefold in both hybrids of the reciprocal crosses. We found that at least 179 genes (1.6% of protein-coding genes) expressed in the endosperm are imprinted, with 68 of them showing maternal preferential expression and 111 paternal preferential expression. Additionally, 38 long noncoding RNAs were imprinted. The latter are transcribed in either sense or antisense orientation from intronic regions of normal protein-coding genes or from intergenic regions. Imprinted genes show a clear pattern of clustering around the genome, with a number of imprinted genes being adjacent to each other. Analysis of allele-specific methylation patterns of imprinted loci in the hybrid endosperm identified 21 differentially methylated regions (DMRs) of several hundred base pairs in length, corresponding to both imprinted genes and noncoding transcripts. All DMRs identified are uniformly hypomethylated in maternal alleles and hypermethylated in paternal alleles, regardless of the imprinting direction of their corresponding loci. Our study indicates highly extensive and complex regulation of genetic imprinting in maize endosperm, a mechanism that can potentially function in the balancing of the gene dosage of this triploid tissue.

170 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported genome-wide high resolution allele-specific maps of DNA methylation and histone H3 lysine 27 trimethylation (H3K27me3) in maize endosperm.
Abstract: Genetic imprinting is a specific epigenetic phenomenon in which a subset of genes is expressed depending on their parent-of-origin. Two types of chromatin modifications, DNA methylation and histone modification, are generally believed to be involved in the regulation of imprinting. However, the genome-wide correlation between allele-specific chromatin modifications and imprinted gene expression in maize remains elusive. Here we report genome-wide high resolution allele-specific maps of DNA methylation and histone H3 lysine 27 trimethylation (H3K27me3) in maize endosperm. For DNA methylation, thousands of parent-of-origin dependent differentially methylated regions (pDMRs) were identified. All pDMRs were uniformly paternally hypermethylated and maternally hypomethylated. We also identified 1131 allele-specific H3K27me3 peaks that are preferentially present in the maternal alleles. Maternally expressed imprinted genes (MEGs) and paternally expressed imprinted genes (PEGs) had different patterns of allele-specific DNA methylation and H3K27me3. Allele-specific expression of MEGs was not directly related to allele-specific H3K27me3, and only a subset of MEGs was associated with maternal-specific DNA demethylation, which was primarily located in the upstream and 5' portion of gene body regions. In contrast, allele-specific expression of a majority of PEGs was related to maternal-specific H3K27me3, with a subgroup of PEGs also associated with maternal-specific DNA demethylation. Both pDMRs and maternal H3K27me3 peaks associated with PEGs are enriched in gene body regions. Our results indicate highly complex patterns of regulation on genetic imprinting in maize endosperm.

133 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI
04 May 2011-PLOS ONE
TL;DR: A procedure for constructing GBS libraries based on reducing genome complexity with restriction enzymes (REs) is reported, which is simple, quick, extremely specific, highly reproducible, and may reach important regions of the genome that are inaccessible to sequence capture approaches.
Abstract: Advances in next generation technologies have driven the costs of DNA sequencing down to the point that genotyping-by-sequencing (GBS) is now feasible for high diversity, large genome species. Here, we report a procedure for constructing GBS libraries based on reducing genome complexity with restriction enzymes (REs). This approach is simple, quick, extremely specific, highly reproducible, and may reach important regions of the genome that are inaccessible to sequence capture approaches. By using methylation-sensitive REs, repetitive regions of genomes can be avoided and lower copy regions targeted with two to three fold higher efficiency. This tremendously simplifies computationally challenging alignment problems in species with high levels of genetic diversity. The GBS procedure is demonstrated with maize (IBM) and barley (Oregon Wolfe Barley) recombinant inbred populations where roughly 200,000 and 25,000 sequence tags were mapped, respectively. An advantage in species like barley that lack a complete genome sequence is that a reference map need only be developed around the restriction sites, and this can be done in the process of sample genotyping. In such cases, the consensus of the read clusters across the sequence tagged sites becomes the reference. Alternatively, for kinship analyses in the absence of a reference genome, the sequence tags can simply be treated as dominant markers. Future application of GBS to breeding, conservation, and global species and population surveys may allow plant breeders to conduct genomic selection on a novel germplasm or species without first having to develop any prior molecular tools, or conservation biologists to determine population structure without prior knowledge of the genome or diversity in the species.

5,163 citations

Journal ArticleDOI
Xun Xu1, Shengkai Pan1, Shifeng Cheng1, Bo Zhang1, Mu D1, Peixiang Ni1, Gengyun Zhang1, Shuang Yang1, Ruiqiang Li1, Jun Wang1, Gisella Orjeda2, Frank Guzman2, Torres M2, Roberto Lozano2, Olga Ponce2, Diana Martinez2, De la Cruz G3, Chakrabarti Sk3, Patil Vu3, Konstantin G. Skryabin4, Boris B. Kuznetsov4, Nikolai V. Ravin4, Tatjana V. Kolganova4, Alexey V. Beletsky4, Andrey V. Mardanov4, Di Genova A5, Dan Bolser5, David M. A. Martin5, Li G, Yang Y, Hanhui Kuang6, Hu Q6, Xiong X7, Gerard J. Bishop8, Boris Sagredo, Nilo Mejía, Zagorski W9, Robert Gromadka9, Jan Gawor9, Pawel Szczesny9, Sanwen Huang, Zhang Z, Liang C, He J, Li Y, He Y, Xu J, Youjun Zhang, Xie B, Du Y, Qu D, Merideth Bonierbale10, Marc Ghislain10, Herrera Mdel R, Giovanni Giuliano, Marco Pietrella, Gaetano Perrotta, Paolo Facella, O'Brien K11, Sergio Enrique Feingold, Barreiro Le, Massa Ga, Luis Aníbal Diambra12, Brett R Whitty13, Brieanne Vaillancourt13, Lin H13, Alicia N. Massa13, Geoffroy M13, Lundback S13, Dean DellaPenna13, Buell Cr14, Sanjeev Kumar Sharma14, David Marshall14, Robbie Waugh14, Glenn J. Bryan14, Destefanis M15, Istvan Nagy15, Dan Milbourne15, Susan Thomson16, Mark Fiers16, Jeanne M. E. Jacobs16, Kåre Lehmann Nielsen17, Mads Sønderkær17, Marina Iovene18, Giovana Augusta Torres18, Jiming Jiang18, Richard E. Veilleux19, Christian W. B. Bachem20, de Boer J20, Theo Borm20, Bjorn Kloosterman20, van Eck H20, Erwin Datema20, Hekkert Bt20, Aska Goverse20, van Ham Rc20, Richard G. F. Visser20 
10 Jul 2011-Nature
TL;DR: The potato genome sequence provides a platform for genetic improvement of this vital crop and predicts 39,031 protein-coding genes and presents evidence for at least two genome duplication events indicative of a palaeopolyploid origin.
Abstract: Potato (Solanum tuberosum L.) is the world's most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato clone to sequence and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade. We also sequenced a heterozygous diploid clone and show that gene presence/absence variants and other potentially deleterious mutations occur frequently and are a likely cause of inbreeding depression. Gene family expansion, tissue-specific expression and recruitment of genes to new pathways contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital crop.

1,813 citations

Journal Article

1,633 citations

Journal Article
TL;DR: In this article, a nucleosome-DNA interaction model was proposed to predict the genome-wide organization of nucleosomes, and it was shown that genomes encode an intrinsic nucleosomal organization and that this intrinsic organization can explain ∼50% of the in-vivo positions.
Abstract: Eukaryotic genomes are packaged into nucleosome particles that occlude the DNA from interacting with most DNA binding proteins. Nucleosomes have higher affinity for particular DNA sequences, reflecting the ability of the sequence to bend sharply, as required by the nucleosome structure. However, it is not known whether these sequence preferences have a significant influence on nucleosome position in vivo, and thus regulate the access of other proteins to DNA. Here we isolated nucleosome-bound sequences at high resolution from yeast and used these sequences in a new computational approach to construct and validate experimentally a nucleosome–DNA interaction model, and to predict the genome-wide organization of nucleosomes. Our results demonstrate that genomes encode an intrinsic nucleosome organization and that this intrinsic organization can explain ∼50% of the in vivo nucleosome positions. This nucleosome positioning code may facilitate specific chromosome functions including transcription factor binding, transcription initiation, and even remodelling of the nucleosomes themselves.

1,399 citations