scispace - formally typeset
Search or ask a question
Author

Hajo Eicken

Bio: Hajo Eicken is an academic researcher from University of Alaska Fairbanks. The author has contributed to research in topics: Sea ice & Arctic ice pack. The author has an hindex of 59, co-authored 218 publications receiving 11089 citations. Previous affiliations of Hajo Eicken include Alfred Wegener Institute for Polar and Marine Research & Hokkaido University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the amount of solar energy absorbed in areas of open water in the Arctic Basin has varied spatially and temporally over the past few decades, and the largest increases in total yearly solar heat input, as much as 4% per year, occurred in the Chukchi Sea and adjacent areas.
Abstract: [1] Over the past few decades the Arctic sea ice cover has decreased in areal extent. This has altered the solar radiation forcing on the Arctic atmosphere-ice-ocean system by decreasing the surface albedo and allowing more solar heating of the upper ocean. This study addresses how the amount of solar energy absorbed in areas of open water in the Arctic Basin has varied spatially and temporally over the past few decades. A synthetic approach was taken, combining satellite-derived ice concentrations, incident irradiances determined from reanalysis products, and field observations of ocean albedo over the Arctic Ocean and the adjacent seas. Results indicate an increase in the solar energy deposited in the upper ocean over the past few decades in 89% of the region studied. The largest increases in total yearly solar heat input, as much as 4% per year, occurred in the Chukchi Sea and adjacent areas.

427 citations

Journal ArticleDOI
TL;DR: Measuring activity down to −20°C adds to the concept that liquid inclusions in frozen environments provide an adequate habitat for active microbial populations on Earth and possibly elsewhere.
Abstract: Arctic wintertime sea-ice cores, characterized by a temperature gradient of −2 to −20°C, were investigated to better understand constraints on bacterial abundance, activity, and diversity at subzero temperatures. With the fluorescent stains 4′,6′-diamidino-2-phenylindole 2HCl (DAPI) (for DNA) and 5-cyano-2,3-ditoyl tetrazolium chloride (CTC) (for O2-based respiration), the abundances of total, particle-associated (>3-μm), free-living, and actively respiring bacteria were determined for ice-core samples melted at their in situ temperatures (−2 to −20°C) and at the corresponding salinities of their brine inclusions (38 to 209 ppt). Fluorescence in situ hybridization was applied to determine the proportions of Bacteria, Cytophaga-Flavobacteria-Bacteroides (CFB), and Archaea. Microtome-prepared ice sections also were examined microscopically under in situ conditions to evaluate bacterial abundance (by DAPI staining) and particle associations within the brine-inclusion network of the ice. For both melted and intact ice sections, more than 50% of cells were found to be associated with particles or surfaces (sediment grains, detritus, and ice-crystal boundaries). CTC-active bacteria (0.5 to 4% of the total) and cells detectable by rRNA probes (18 to 86% of the total) were found in all ice samples, including the coldest (−20°C), where virtually all active cells were particle associated. The percentage of active bacteria associated with particles increased with decreasing temperature, as did the percentages of CFB (16 to 82% of Bacteria) and Archaea (0.0 to 3.4% of total cells). These results, combined with correlation analyses between bacterial variables and measures of particulate matter in the ice as well as the increase in CFB at lower temperatures, confirm the importance of particle or surface association to bacterial activity at subzero temperatures. Measuring activity down to −20°C adds to the concept that liquid inclusions in frozen environments provide an adequate habitat for active microbial populations on Earth and possibly elsewhere.

396 citations

Journal ArticleDOI
TL;DR: In this article, the role of sediment inclusions in lowering ice albedo and affecting ice ablation is poorly understood, and the authors investigate the processes by which sediment is incorporated into the ice cover, and identify transport paths and probable depositional centers for the released sediment.

359 citations

Journal ArticleDOI
TL;DR: In this article, the authors used macroscopic and microscopic approaches to study the content and possible ecological role of exopolymeric substances (EPSs) produced by microorganisms in various aquatic, porous, and extreme environments.

355 citations

Book ChapterDOI
29 Jan 2010

298 citations


Cited by
More filters
Journal ArticleDOI
22 Feb 2001-Nature
TL;DR: Critically what it means to be an extremophile is examined, and the implications for evolution, biotechnology and especially the search for life in the Universe are examined.
Abstract: Each recent report of liquid water existing elsewhere in the Solar System has reverberated through the international press and excited the imagination of humankind. Why? Because in the past few decades we have come to realize that where there is liquid water on Earth, virtually no matter what the physical conditions, there is life. What we previously thought of as insurmountable physical and chemical barriers to life, we now see as yet another niche harbouring 'extremophiles'. This realization, coupled with new data on the survival of microbes in the space environment and modelling of the potential for transfer of life between celestial bodies, suggests that life could be more common than previously thought. Here we examine critically what it means to be an extremophile, and the implications of this for evolution, biotechnology and especially the search for life in the Universe.

1,738 citations

Journal ArticleDOI
TL;DR: The past decade has seen substantial advances in understanding Arctic amplification, that trends and variability in surface air temperature tend to be larger in the Arctic region than for the Northern Hemisphere or globe as a whole as discussed by the authors.

1,726 citations

Journal ArticleDOI
TL;DR: In this paper, the maximum limits of the Eurasian ice sheets during four glaciations have been reconstructed: (1) the Late Saalian (>140 ka), (2) the Early Weichselian (100-80 ka),(3) the Middle Weichsellian (60-50 ka), and (4) the late Weichselsian (25-15 ka) based on satellite data and aerial photographs combined with geological field investigations in Russia and Siberia, and with marine seismic and sediment core data.

1,426 citations