scispace - formally typeset
Search or ask a question
Author

Håkan Wallander

Bio: Håkan Wallander is an academic researcher from Lund University. The author has contributed to research in topics: Mycorrhiza & Mycelium. The author has an hindex of 49, co-authored 134 publications receiving 8388 citations. Previous affiliations of Håkan Wallander include Swedish University of Agricultural Sciences.


Papers
More filters
Journal ArticleDOI
29 Mar 2013-Science
TL;DR: It is shown that 50 to 70% of stored carbon in a chronosequence of boreal forested islands derives from roots and root-associated microorganisms, suggesting an alternative mechanism for the accumulation of organic matter in boreal forests during succession in the long-term absence of disturbance.
Abstract: Boreal forest soils function as a terrestrial net sink in the global carbon cycle. The prevailing dogma has focused on aboveground plant litter as a principal source of soil organic matter. Using C-14 bomb-carbon modeling, we show that 50 to 70% of stored carbon in a chronosequence of boreal forested islands derives from roots and root-associated microorganisms. Fungal biomarkers indicate impaired degradation and preservation of fungal residues in late successional forests. Furthermore, 454 pyrosequencing of molecular barcodes, in conjunction with stable isotope analyses, highlights root-associated fungi as important regulators of ecosystem carbon dynamics. Our results suggest an alternative mechanism for the accumulation of organic matter in boreal forests during succession in the long-term absence of disturbance.

1,157 citations

Journal ArticleDOI
TL;DR: The biomass of EM mycelium in the soil was in the same range as the biomass of fine roots and peaks of mycelial growth coincided with periods of maximum growth of fine-roots.
Abstract: Summary • In-growth mesh bags were used to quantify the production of external mycelium of ectomycorrhizal (EM) fungi in the field. • Colonization of the mesh bags was followed by visual estimation of the amount of mycelium, and by measuring fungal biomarkers (the phospholipid fatty acid (PLFA) 18 : 2 ω 6,9 and ergosterol). Mesh bags were placed inside and outside plots that were root isolated in order to estimate the amount of saprotrophic mycelium in relation to EM mycelium. The majority of mycelium in the mesh bags were EM, and this was confirmed by analysis of the δ 13 C value in mycelia. • Fungal colonization of mesh bags peaked during autumn. The total amount of EM mycelium produced in the mesh bags during a year was calculated to be between 125 and 200 kg ha - 1 . The total amount of EM mycelium (including EM mantles) in the humus was estimated to be 700-900 kg ha - 1 . • The biomass of EM mycelium in the soil was in the same range as the biomass of fine roots and peaks of mycelial growth coincided with periods of maximum growth of fine-roots.

455 citations

Journal ArticleDOI
TL;DR: The role of fungi in biological weathering has attracted a lot of interest as discussed by the authors, although the role of bacteria (Eubacteria, Archaea) has largely been neglected, until recently, however, fungi has become an increasingly important focus of biogeochemical research.
Abstract: No rock at the Earth's surface escapes weathering. This process is the primary source of all the essential elements for organisms, except nitrogen and carbon. Since the onset of terrestrial life, weathering has been accelerated under the influence of biota. The study of biological weathering started at the end of the 19th century. Although the role of bacteria (Eubacteria, Archaea) has attracted a lot of interest, until recently the role of fungi has largely been neglected. More recently, however, fungal weathering has become an increasingly important focus of biogeochemical research.

310 citations

Journal ArticleDOI
TL;DR: There is increasing evidence that residues of EM fungi play a major role in the formation of stable N and C in SOM, which highlights the need to include mycorrhizal effects in models of global soil C stores.
Abstract: There is growing evidence of the importance of extramatrical mycelium (EMM) of mycorrhizal fungi in carbon (C) cycling in ecosystems. However, our understanding has until recently been mainly based on laboratory experiments, and knowledge of such basic parameters as variations in mycelial production, standing biomass and turnover as well as the regulatory mechanisms behind such variations in forest soils is limited. Presently, the production of EMM by ectomycorrhizal (EM) fungi has been estimated at similar to 140 different forest sites to be up to several hundreds of kg per ha per year, but the published data are biased towards Picea abies in Scandinavia. Little is known about the standing biomass and turnover of EMM in other systems, and its influence on the C stored or lost from soils. Here, focussing on ectomycorrhizas, we discuss the factors that regulate the production and turnover of EMM and its role in soil C dynamics, identifying important gaps in this knowledge. C availability seems to be the key factor determining EMM production and possibly its standing biomass in forests but direct effects of mineral nutrient availability on the EMM can be important. There is great uncertainty about the rate of turnover of EMM. There is increasing evidence that residues of EM fungi play a major role in the formation of stable N and C in SOM, which highlights the need to include mycorrhizal effects in models of global soil C stores.

269 citations

Journal ArticleDOI
TL;DR: The growth ofEM mycelia was not directly related to N concentration in the soil but rather to the N status of the trees, although other factors induced by the N treatment may also have influenced EM mycelial growth.
Abstract: A field study was carried out to evaluate the influence of N fertilization on the growth of the external mycelium of ectomycorrhizal (EM) fungi in a Norway spruce forest in SW Sweden. Nylon mesh bags filled with sand were buried in the soil for 6-18 months and the ingrowth of mycelium was used as an estimate of EM mycelial growth. Root-isolated, trenched plots were used to estimate background growth of saprotrophic fungi. Mycelial growth of EM fungi in N-treated plots was reduced to c. 50% of that in nonfertilized plots. Local addition of apatite stimulated the EM mycelial growth in N-treated plots. The negative influence of N on the growth of external EM mycelium observed earlier in laboratory studies was confirmed in the present field study. The growth of EM mycelia was not directly related to N concentration in the soil but rather to the N status of the trees, although other factors induced by the N treatment may also have influenced EM mycelial growth. (Less)

259 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Soils collected across a long-term liming experiment were used to investigate the direct influence of pH on the abundance and composition of the two major soil microbial taxa, fungi and bacteria, and both the relative abundance and diversity of bacteria were positively related to pH.
Abstract: Soils collected across a long-term liming experiment (pH 4.0-8.3), in which variation in factors other than pH have been minimized, were used to investigate the direct influence of pH on the abundance and composition of the two major soil microbial taxa, fungi and bacteria. We hypothesized that bacterial communities would be more strongly influenced by pH than fungal communities. To determine the relative abundance of bacteria and fungi, we used quantitative PCR (qPCR), and to analyze the composition and diversity of the bacterial and fungal communities, we used a bar-coded pyrosequencing technique. Both the relative abundance and diversity of bacteria were positively related to pH, the latter nearly doubling between pH 4 and 8. In contrast, the relative abundance of fungi was unaffected by pH and fungal diversity was only weakly related with pH. The composition of the bacterial communities was closely defined by soil pH; there was as much variability in bacterial community composition across the 180-m distance of this liming experiment as across soils collected from a wide range of biomes in North and South America, emphasizing the dominance of pH in structuring bacterial communities. The apparent direct influence of pH on bacterial community composition is probably due to the narrow pH ranges for optimal growth of bacteria. Fungal community composition was less strongly affected by pH, which is consistent with pure culture studies, demonstrating that fungi generally exhibit wider pH ranges for optimal growth.

2,966 citations

Journal ArticleDOI
TL;DR: Recent developments in rhizosphere research are discussed in relation to assessing the contribution of the micro- and macroflora to sustainable agriculture, nature conservation, the development of bio-energy crops and the mitigation of climate change.
Abstract: The rhizosphere is the interface between plant roots and soil where interactions among a myriad of microorganisms and invertebrates affect biogeochemical cycling, plant growth and tolerance to biotic and abiotic stress. The rhizosphere is intriguingly complex and dynamic, and understanding its ecology and evolution is key to enhancing plant productivity and ecosystem functioning. Novel insights into key factors and evolutionary processes shaping the rhizosphere microbiome will greatly benefit from integrating reductionist and systems-based approaches in both agricultural and natural ecosystems. Here, we discuss recent developments in rhizosphere research in relation to assessing the contribution of the micro- and macroflora to sustainable agriculture, nature conservation, the development of bio-energy crops and the mitigation of climate change.

2,332 citations

Journal ArticleDOI
TL;DR: Fungi typically live in highly diverse communities composed of multiple ecological guilds, and FUNGuild is a tool that can be used to taxonomically parse fungal OTUs by ecological guild independent of sequencing platform or analysis pipeline.

2,290 citations

Journal ArticleDOI
27 Nov 2014-Nature
TL;DR: Recent progress in understanding belowground biodiversity and its role in determining the ecological and evolutionary responses of terrestrial ecosystems to current and future environmental change are reviewed.
Abstract: Evidence is mounting that the immense diversity of microorganisms and animals that live belowground contributes significantly to shaping aboveground biodiversity and the functioning of terrestrial ecosystems. Our understanding of how this belowground biodiversity is distributed, and how it regulates the structure and functioning of terrestrial ecosystems, is rapidly growing. Evidence also points to soil biodiversity as having a key role in determining the ecological and evolutionary responses of terrestrial ecosystems to current and future environmental change. Here we review recent progress and propose avenues for further research in this field.

2,074 citations

01 Jan 2016

1,907 citations