scispace - formally typeset
Search or ask a question
Author

Hakon Leffler

Bio: Hakon Leffler is an academic researcher from Lund University. The author has contributed to research in topics: Galectin & Glycolipid. The author has an hindex of 80, co-authored 281 publications receiving 20756 citations. Previous affiliations of Hakon Leffler include University of Waterloo & University of Edinburgh.


Papers
More filters
Journal ArticleDOI
TL;DR: A brief introduction to the galectins as a protein family with some comments on nomenclature is given.
Abstract: Good evidence suggest roles of galectins in cancer, immunity and inflammation, and development, but a unifying picture of their biological function is lacking. Instead galectins appear to have a particularly diverse, bewildering but intriguing array of activities both inside and outside cells—“clear truths and mysteries are inextricably twined”. Fortunately this has not discouraged but rather enthused a large number of good galectin researchers, some of which have contributed to this special issue of Glycoconjugate Journal to provide a personal, critical status of the field. Here we will give a brief introduction to the galectins as a protein family with some comments on nomenclature. Published in 2004.

653 citations

Journal ArticleDOI
TL;DR: In this paper, a siRNA-targeted deletion of the galectin-3 gene in 129 mice specifically restrains IL-4/IL-13-induced alternative macrophage activation in bone marrow-derived macrophages.
Abstract: Alternative macrophage activation is implicated in diverse disease pathologies such as asthma, organ fibrosis, and granulomatous diseases, but the mechanisms underlying macrophage programming are not fully understood. Galectin-3 is a carbohydrate-binding lectin present on macrophages. We show that disruption of the galectin-3 gene in 129sv mice specifically restrains IL-4/IL-13-induced alternative macrophage activation in bone marrow-derived macrophages in vitro and in resident lung and recruited peritoneal macrophages in vivo without affecting IFN-gamma/LPS-induced classical activation or IL-10-induced deactivation. IL-4-mediated alternative macrophage activation is inhibited by siRNA-targeted deletion of galectin-3 or its membrane receptor CD98 and by inhibition of PI3K. Increased galectin-3 expression and secretion is a feature of alternative macrophage activation. IL-4 stimulates galectin-3 expression and release in parallel with other phenotypic markers of alternative macrophage activation. By contrast, classical macrophage activation with LPS inhibits galectin-3 expression and release. Galectin-3 binds to CD98, and exogenous galectin-3 or cross-linking CD98 with the mAb 4F2 stimulates PI3K activation and alternative activation. IL-4-induced alternative activation is blocked by bis-(3-deoxy-3-(3-methoxybenzamido)-beta-D-galactopyranosyl) sulfane, a specific inhibitor of extracellular galectin-3 carbohydrate binding. These results demonstrate that a galectin-3 feedback loop drives alternative macrophage activation. Pharmacological modulation of galectin-3 function represents a novel therapeutic strategy in pathologies associated with alternatively activated macrophages.

458 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
TL;DR: The basis for the unique properties and rate enhancement for triazole formation under Cu(1) catalysis should be found in the high ∆G of the reaction in combination with the low character of polarity of the dipole of the noncatalyzed thermal reaction, which leads to a considerable activation barrier.
Abstract: The Huisgen 1,3-dipolar cycloaddition reaction of organic azides and alkynes has gained considerable attention in recent years due to the introduction in 2001 of Cu(1) catalysis by Tornoe and Meldal, leading to a major improvement in both rate and regioselectivity of the reaction, as realized independently by the Meldal and the Sharpless laboratories. The great success of the Cu(1) catalyzed reaction is rooted in the fact that it is a virtually quantitative, very robust, insensitive, general, and orthogonal ligation reaction, suitable for even biomolecular ligation and in vivo tagging or as a polymerization reaction for synthesis of long linear polymers. The triazole formed is essentially chemically inert to reactive conditions, e.g. oxidation, reduction, and hydrolysis, and has an intermediate polarity with a dipolar moment of ∼5 D. The basis for the unique properties and rate enhancement for triazole formation under Cu(1) catalysis should be found in the high ∆G of the reaction in combination with the low character of polarity of the dipole of the noncatalyzed thermal reaction, which leads to a considerable activation barrier. In order to understand the reaction in detail, it therefore seems important to spend a moment to consider the structural and mechanistic aspects of the catalysis. The reaction is quite insensitive to reaction conditions as long as Cu(1) is present and may be performed in an aqueous or organic environment both in solution and on solid support.

3,855 citations

Journal ArticleDOI
TL;DR: The cellular sources of these cytokines, receptor signaling pathways, and induced markers and gene signatures are reviewed and the concept of macrophage activation in the context of the immune response is revisit.
Abstract: Macrophages are innate immune cells with well-established roles in the primary response to pathogens, but also in tissue homeostasis, coordination of the adaptive immune response, inflammation, resolution, and repair. These cells recognize danger signals through receptors capable of inducing specialized activation programs. The classically known macrophage activation is induced by IFN-gamma, which triggers a harsh proinflammatory response that is required to kill intracellular pathogens. Macrophages also undergo alternative activation by IL-4 and IL-13, which trigger a different phenotype that is important for the immune response to parasites. Here we review the cellular sources of these cytokines, receptor signaling pathways, and induced markers and gene signatures. We draw attention to discrepancies found between mouse and human models of alternative activation. The evidence for in vivo alternative activation of macrophages is also analyzed, with nematode infection as prototypic disease. Finally, we revisit the concept of macrophage activation in the context of the immune response.

2,515 citations

Journal ArticleDOI
15 May 1998-Blood
TL;DR: The membrane has long been viewed as an inert cellophane-like membrane that lines the circulatory system with its primary essential function being the maintenance of vessel wall permeability.

2,368 citations