scispace - formally typeset
Search or ask a question
Author

Hamers C

Bio: Hamers C is an academic researcher from Vrije Universiteit Brussel. The author has contributed to research in topics: Single-domain antibody & Heavy-chain antibody. The author has an hindex of 1, co-authored 1 publications receiving 2512 citations.

Papers
More filters
Journal ArticleDOI
03 Jun 1993-Nature
TL;DR: The presence of considerable amounts of IgG-like material of Mr 100K in the serum of the camel, which is composed of heavy-chain dimers and devoid of light chains, but nevertheless have an extensive antigen-binding repertoire, opens new perspectives in the engineering of antibodies.
Abstract: Random association of VL and VH repertoires contributes considerably to antibody diversity. The diversity and the affinity are then increased by hypermutation in B cells located in germinal centres. Except in the case of 'heavy chain' disease, naturally occurring heavy-chain antibodies have not been described, although antigen binding has been demonstrated for separated heavy chains or cloned VH domains. Here we investigate the presence of considerable amounts of IgG-like material of M(r) 100K in the serum of the camel (Camelus dromedarius). These molecules are composed of heavy-chain dimers and are devoid of light chains, but nevertheless have an extensive antigen-binding repertoire, a finding that calls into question the role of light chains in the camel. Camel heavy-chain IgGs lack CH1, which in one IgG class might be structurally replaced by an extended hinge. Heavy-chain IgGs are a feature of all camelids. These findings open new perspectives in the engineering of antibodies.

2,863 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Human antibody fragments with many different binding specificities have been isolated from the same phage repertoire, including haptens, carbohydrates, secreted and cell surface proteins, viral coat proteins, and intracellular antigens from the lumen of the endoplasmic reticulum and the nucleus.
Abstract: Antibody fragments of predetermined binding specificity have recently been constructed from repertoires of antibody V genes, bypassing hybridoma technology and even immunization. The V gene repertoires are harvested from populations of lymphocytes, or assembled in vitro, and cloned for display of associated heavy and light chain variable domains on the surface of filamentous bacteriophage. Rare phage are selected from the repertoire by binding to antigen; soluble antibody fragments are expressed from infected bacteria; and the affinity of binding of selected antibodies is improved by mutation. The process mimics immune selection, and antibodies with many different binding specificities have been isolated from the same phage repertoire. Thus human antibody fragments have been isolated with specificities against both foreign and self antigens, including haptens, carbohydrates, secreted and cell surface proteins, viral coat proteins, and intracellular antigens from the lumen of the endoplasmic reticulum and ...

1,973 citations

Journal ArticleDOI
13 Jan 2011-Nature
TL;DR: A camelid antibody fragment to the human β2 adrenergic receptor is generated, and an agonist-bound, active-state crystal structure of the receptor-nanobody complex is obtained, providing insights into the process of agonist binding and activation.
Abstract: G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviours in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due to the inherent instability of this state in the absence of a G protein. We generated a camelid antibody fragment (nanobody) to the human b2 adrenergic receptor (b2AR) that exhibits G protein-like behaviour, and obtained an agonist-bound, active-state crystal structure of the receptor-nanobody complex. Comparison with the inactive b2AR structure reveals subtle changes in the binding

1,558 citations

Journal ArticleDOI
07 Mar 2008-Sensors
TL;DR: In this article, the most common traditional traditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry, impedance spectroscopy, and various field-effect transistor based methods are presented along with selected promising novel approaches, including nanowire or magnetic nanoparticle-based biosensing.
Abstract: Quantification of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. However, converting the biological information to an easily processed electronic signal is challenging due to the complexity of connecting an electronic device directly to a biological environment. Electrochemical biosensors provide an attractive means to analyze the content of a biological sample due to the direct conversion of a biological event to an electronic signal. Over the past decades several sensing concepts and related devices have been developed. In this review, the most common traditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry, impedance spectroscopy, and various field-effect transistor based methods are presented along with selected promising novel approaches, such as nanowire or magnetic nanoparticle-based biosensing. Additional measurement techniques, which have been shown useful in combination with electrochemical detection, are also summarized, such as the electrochemical versions of surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry, quartz crystal microbalance, and scanning probe microscopy. The signal transduction and the general performance of electrochemical sensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches, such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymes into vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities for signal amplification. In particular, this review highlights the importance of the precise control over the delicate interplay between surface nano-architectures, surface functionalization and the chosen sensor transducer principle, as well as the usefulness of complementary characterization tools to interpret and to optimize the sensor response.

1,550 citations

Journal ArticleDOI
TL;DR: The facile identification of antigen-specific VHHs and their beneficial biochemical and economic properties have encouraged antibody engineering of these single-domain antibodies for use as a research tool and in biotechnology and medicine.
Abstract: Sera of camelids contain both conventional heterotetrameric antibodies and unique functional heavy (H)-chain antibodies (HCAbs). The H chain of these homodimeric antibodies consists of one antigen-binding domain, the VHH, and two constant domains. HCAbs fail to incorporate light (L) chains owing to the deletion of the first constant domain and a reshaped surface at the VHH side, which normally associates with L chains in conventional antibodies. The genetic elements composing HCAbs have been identified, but the in vivo generation of these antibodies from their dedicated genes into antigen-specific and affinity-matured bona fide antibodies remains largely underinvestigated. However, the facile identification of antigen-specific VHHs and their beneficial biochemical and economic properties (size, affinity, specificity, stability, production cost) supported by multiple crystal structures have encouraged antibody engineering of these single-domain antibodies for use as a research tool and in biotechnology and medicine.

1,543 citations

Journal ArticleDOI
TL;DR: Immunoglobulins are heterodimeric proteins composed of 2 heavy and 2 light chains that can be separated functionally into variable domains that bind antigens and constant domains that specify effector functions, such as activation of complement or binding to Fc receptors.
Abstract: Immunoglobulins are heterodimeric proteins composed of 2 heavy and 2 light chains. They can be separated functionally into variable domains that bind antigens and constant domains that specify effector functions, such as activation of complement or binding to Fc receptors. The variable domains are created by means of a complex series of gene rearrangement events and can then be subjected to somatic hypermutation after exposure to antigen to allow affinity maturation. Each variable domain can be split into 3 regions of sequence variability termed the complementarity-determining regions (CDRs) and 4 regions of relatively constant sequence termed the framework regions. The 3 CDRs of the heavy chain are paired with the 3 CDRs of the light chain to form the antigen-binding site, as classically defined. The constant domains of the heavy chain can be switched to allow altered effector function while maintaining antigen specificity. There are 5 main classes of heavy chain constant domains. Each class defines the IgM, IgG, IgA, IgD, and IgE isotypes. IgG can be split into 4 subclasses, IgG1, IgG2, IgG3, and IgG4, each with its own biologic properties, and IgA can similarly be split into IgA1 and IgA2.

1,303 citations