scispace - formally typeset
Search or ask a question
Author

Hamid GholamHosseini

Bio: Hamid GholamHosseini is an academic researcher from Auckland University of Technology. The author has contributed to research in topics: Vital signs & Remote patient monitoring. The author has an hindex of 18, co-authored 99 publications receiving 1598 citations. Previous affiliations of Hamid GholamHosseini include Mälardalen University College & Flinders University.


Papers
More filters
Journal ArticleDOI
TL;DR: The main aim is to review current state of the art monitoring systems and to perform extensive and an in-depth analysis of the findings in the area of smart health monitoring systems.
Abstract: Health monitoring systems have rapidly evolved during the past two decades and have the potential to change the way health care is currently delivered. Although smart health monitoring systems automate patient monitoring tasks and, thereby improve the patient workflow management, their efficiency in clinical settings is still debatable. This paper presents a review of smart health monitoring systems and an overview of their design and modeling. Furthermore, a critical analysis of the efficiency, clinical acceptability, strategies and recommendations on improving current health monitoring systems will be presented. The main aim is to review current state of the art monitoring systems and to perform extensive and an in-depth analysis of the findings in the area of smart health monitoring systems. In order to achieve this, over fifty different monitoring systems have been selected, categorized, classified and compared. Finally, major advances in the system design level have been discussed, current issues facing health care providers, as well as the potential challenges to health monitoring field will be identified and compared to other similar systems.

330 citations

Journal ArticleDOI
TL;DR: The results of the review suggest that most research in wearable ECG monitoring systems focus on the older adults and this technology has been adopted in aged care facilitates and it is shown that how mobile telemedicine systems have evolved and how advances in wearable wireless textile-based systems could ensure better quality of healthcare delivery.
Abstract: Wearable health monitoring is an emerging technology for continuous monitoring of vital signs including the electrocardiogram (ECG). This signal is widely adopted to diagnose and assess major health risks and chronic cardiac diseases. This paper focuses on reviewing wearable ECG monitoring systems in the form of wireless, mobile and remote technologies related to older adults. Furthermore, the efficiency, user acceptability, strategies and recommendations on improving current ECG monitoring systems with an overview of the design and modelling are presented. In this paper, over 120 ECG monitoring systems were reviewed and classified into smart wearable, wireless, mobile ECG monitoring systems with related signal processing algorithms. The results of the review suggest that most research in wearable ECG monitoring systems focus on the older adults and this technology has been adopted in aged care facilitates. Moreover, it is shown that how mobile telemedicine systems have evolved and how advances in wearable wireless textile-based systems could ensure better quality of healthcare delivery. The main drawbacks of deployed ECG monitoring systems including imposed limitations on patients, short battery life, lack of user acceptability and medical professional's feedback, and lack of security and privacy of essential data have been also discussed.

236 citations

Journal ArticleDOI
TL;DR: The aim of this review is to investigate barriers and challenges of wearable patient monitoring (WPM) solutions adopted by clinicians in acute, as well as in community, care settings and to consider recent studies published between 2015 and 2017.
Abstract: The aim of this review is to investigate barriers and challenges of wearable patient monitoring (WPM) solutions adopted by clinicians in acute, as well as in community, care settings. Currently, healthcare providers are coping with ever-growing healthcare challenges including an ageing population, chronic diseases, the cost of hospitalization, and the risk of medical errors. WPM systems are a potential solution for addressing some of these challenges by enabling advanced sensors, wearable technology, and secure and effective communication platforms between the clinicians and patients. A total of 791 articles were screened and 20 were selected for this review. The most common publication venue was conference proceedings (13, 54%). This review only considered recent studies published between 2015 and 2017. The identified studies involved chronic conditions (6, 30%), rehabilitation (7, 35%), cardiovascular diseases (4, 20%), falls (2, 10%) and mental health (1, 5%). Most studies focussed on the system aspects of WPM solutions including advanced sensors, wireless data collection, communication platform and clinical usability based on a specific area or disease. The current studies are progressing with localized sensor-software integration to solve a specific use-case/health area using non-scalable and `silo' solutions. There is further work required regarding interoperability and clinical acceptance challenges. The advancement of wearable technology and possibilities of using machine learning and artificial intelligence in healthcare is a concept that has been investigated by many studies. We believe future patient monitoring and medical treatments will build upon efficient and affordable solutions of wearable technology.

201 citations

Journal ArticleDOI
TL;DR: It was found that the mobile based applications have been widely developed in recent years with fast growing deployment by healthcare professionals and patients but despite the advantages of smartphones in patient monitoring, education, and management there are some critical issues and challenges related to security and privacy of data, acceptability, reliability and cost that need to be addressed.
Abstract: Mobile phones are becoming increasingly important in monitoring and delivery of healthcare interventions. They are often considered as pocket computers, due to their advanced computing features, enhanced preferences and diverse capabilities. Their sophisticated sensors and complex software applications make the mobile healthcare (m-health) based applications more feasible and innovative. In a number of scenarios user-friendliness, convenience and effectiveness of these systems have been acknowledged by both patients as well as healthcare providers. M-health technology employs advanced concepts and techniques from multidisciplinary fields of electrical engineering, computer science, biomedical engineering and medicine which benefit the innovations of these fields towards healthcare systems. This paper deals with two important aspects of current mobile phone based sensor applications in healthcare. Firstly, critical review of advanced applications such as; vital sign monitoring, blood glucose monitoring and in-built camera based smartphone sensor applications. Secondly, investigating challenges and critical issues related to the use of smartphones in healthcare including; reliability, efficiency, mobile phone platform variability, cost effectiveness, energy usage, user interface, quality of medical data, and security and privacy. It was found that the mobile based applications have been widely developed in recent years with fast growing deployment by healthcare professionals and patients. However, despite the advantages of smartphones in patient monitoring, education, and management there are some critical issues and challenges related to security and privacy of data, acceptability, reliability and cost that need to be addressed.

171 citations

Journal ArticleDOI
TL;DR: A moderate to low usability/ user-friendly approach is reported in most of the studies, and issues found were inaccurate sensors, battery/ power issues, restricting the users within the monitoring area/ space and lack of interoperability.
Abstract: This review aims to present current advancements in wearable technologies and IoT-based applications to support independent living. The secondary aim was to investigate the barriers and challenges of wearable sensors and Internet-of-Things (IoT) monitoring solutions for older adults. For this work, we considered falls and activity of daily life (ADLs) for the ageing population (older adults). A total of 327 articles were screened, and 14 articles were selected for this review. This review considered recent studies published between 2015 and 2019. The research articles were selected based on the inclusion and exclusion criteria, and studies that support or present a vision to provide advancement to the current space of ADLs, independent living and supporting the ageing population. Most studies focused on the system aspects of wearable sensors and IoT monitoring solutions including advanced sensors, wireless data collection, communication platform and usability. Moderate to low usability/ user-friendly approach is reported in most of the studies. Other issues found were inaccurate sensors, battery/ power issues, restricting the users within the monitoring area/ space and lack of interoperability. The advancement of wearable technology and the possibilities of using advanced IoT technology to assist older adults with their ADLs and independent living is the subject of many recent research and investigation.

122 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is concluded that although various image fusion methods have been proposed, there still exist several future directions in different image fusion applications and the researches in the image fusion field are still expected to significantly grow in the coming years.

871 citations

Journal ArticleDOI
TL;DR: This statement examines the relation of the resting ECG to its technology to establish standards that will improve the accuracy and usefulness of the ECG in practice and to recommend recommendations for ECG standards.

649 citations

Journal ArticleDOI
TL;DR: In this article, a review article provides a factual listing of methods and summarizes the broad scientific challenges faced in the field of medical image fusion, concluding that even though there exists several open ended technological and scientific challenges, the fusion of medical images has proved to be useful for advancing the clinical reliability of using medical imaging for medical diagnostics and analysis, and is a scientific discipline that has the potential to significantly grow in the coming years.
Abstract: Medical image fusion is the process of registering and combining multiple images from single or multiple imaging modalities to improve the imaging quality and reduce randomness and redundancy in order to increase the clinical applicability of medical images for diagnosis and assessment of medical problems. Multi-modal medical image fusion algorithms and devices have shown notable achievements in improving clinical accuracy of decisions based on medical images. This review article provides a factual listing of methods and summarizes the broad scientific challenges faced in the field of medical image fusion. We characterize the medical image fusion research based on (1) the widely used image fusion methods, (2) imaging modalities, and (3) imaging of organs that are under study. This review concludes that even though there exists several open ended technological and scientific challenges, the fusion of medical images has proved to be useful for advancing the clinical reliability of using medical imaging for medical diagnostics and analysis, and is a scientific discipline that has the potential to significantly grow in the coming years.

633 citations