Author
Hamsakutty Vettikalladi
Other affiliations: King Abdullah University of Science and Technology, University of Rennes
Bio: Hamsakutty Vettikalladi is an academic researcher from King Saud University. The author has contributed to research in topics: Antenna measurement & Antenna efficiency. The author has an hindex of 9, co-authored 54 publications receiving 402 citations. Previous affiliations of Hamsakutty Vettikalladi include King Abdullah University of Science and Technology & University of Rennes.
Papers
More filters
TL;DR: In this paper, a high-efficient and high-gain aperture coupled patch antenna with superstrate at 60 GHz was studied and presented, and it was shown that adding superstrate will result in a significant effect on the antenna performances, and the size of the superstrate is critical for the optimum performance.
Abstract: A high-efficient and high-gain aperture coupled patch antenna with superstrate at 60 GHz is studied and presented. It is noted that adding superstrate will result in a significant effect on the antenna performances, and the size of the superstrate is critical for the optimum performance. The maximum measured gain of a single antenna with superstrate is 14.6 dBi, which is higher than that of a classical 2 x 2 array. It is found that the gain measured of a single antenna with superstrate increases nearly 9 dB at 60 GHz over its basic patch antenna. This superstrate antenna gives a very high estimated efficiency of 76%. The 2:1 measured VSWR bandwidth with superstrate is 6.8%. The radiation patterns are found to be broadside all over the frequency band. Also, this letter explains a comparison to another source of parasitic patch superstrate antenna with normal microstrip coupling. It is found that aperture coupling is better for high-gain antenna applications.
155 citations
TL;DR: Different antenna designs that offer characteristics better suited to THz communication over short distances are presented, making them viable candidates for high-speed and short-distance wireless communication systems.
Abstract: Terahertz (THz) links will play a major role in high data rate communication over a distance of few meters. In order to achieve this task, antenna designs with high gain and wideband characteristics will spearhead these links. In this contribution, we present different antenna designs that offer characteristics better suited to THz communication over short distances. Firstly, a single-element antenna having a dipole and reflector is designed to operate at 300 GHz, which is considered as a sub-terahertz band. That antenna achieves a wide impedance bandwidth of 38.6% from 294 GHz to 410 GHz with a gain of 5.14 dBi. Secondly, two designs based on the same dipole structure but with added directors are introduced to increase the gain while maintaining almost the same bandwidth. The gains achieved are 8.01 dBi and 9.6 dBi, respectively. Finally, an array of elements is used to achieve the highest possible gain of 13.6 dBi with good efficiency about 89% and with limited director elements for a planar compact structure to state-of-the-art literature. All the results achieved make the proposed designs viable candidates for high-speed and short-distance wireless communication systems.
52 citations
TL;DR: A novel compact high-efficient circularly polarized conical horn antenna is realized with Wire Electrical Discharge Machining (EDM) technique operating at 300 GHz for 6G wireless communications is presented.
Abstract: A novel compact high-efficient circularly polarized conical horn antenna is realized with Wire Electrical Discharge Machining (EDM) technique operating at 300 GHz for 6G wireless communications is presented The proposed antenna structure consists of three main components; a waveguide feed, a circular polarizer disk, and a conical horn The waveguide feed is a standard WR-03 rectangular waveguide which feeds the whole structure The circular polarizer disk is comprised of a crossed slot with unequal lengths which are perpendicular to each other By adjusting the lengths of both slots, two orthogonal modes are excited in the antenna to produce circular polarization The conical horn is mounted on the circular polarizer disk The proposed antenna was designed and optimized using CST Microwave Studio and is validated experimentally by an inexpensive direct Wire-cutting EDM technique over the WM-860 frequency band The fabricated circularly polarized horn antenna achieved a wide impedance bandwidth of 20 % from 270 GHz to 330 GHz with a reflection coefficient ≤ -15 dB The measured results show that the 3 dB axial ratio of the fabricated antenna prototype has a bandwidth of 7 GHz from 309 GHz to 316 GHz with a minimum axial ratio of 115 dB at 312 GHz The measured normalized radiation patterns show good agreement with simulated results for different frequencies in both the elevation and azimuth planes at broadside direction with good symmetry in both planes
36 citations
TL;DR: An electronically controlled steerable SIW antenna has been designed and experimentally verified that the radiation angle varies from −33° to +33°, which represents a new feeding method for etched slots in SIW antennas.
Abstract: A novel reconfigurable slotted leaky-wave antenna (LWA) based on a substrate integrated waveguide (SIW) with a fixed-frequency beam-steering capability is presented in this paper. For improved compactness, the structure is based on a SIW technology with rectangular slots fed by associated coupling with plated-through holes (PTH).This represents a new feeding method for etched slots in SIW antennas. Each via is loaded with a pin diode on both sides frontend of the waveguide. The pin diodes are tunable by adjusting the DC bias voltage, which results in beam scanning at a fixed frequency of around 27 GHz. Thus an electronically controlled steerable SIW antenna has been designed and experimentally verified that the radiation angle varies from -33° to +33°.
32 citations
TL;DR: In this paper, a double-layer log-periodic antenna with a reduced size and a limited number of elements is proposed for the 60 GHz band, which achieves a maximum realized gain of 11.8 dBi with an estimated radiation efficiency of 91.2%.
Abstract: This paper focuses on the 60 GHz band, which is known to be very attractive for enabling next-generation abundant multi-Gbps wireless connectivity in 5G communication. We propose a novel concept of a double-layer antenna, loosely inspired from standard log-periodic schemes but with an aperiodic geometry, reduced size, and a limited number of elements while achieving excellent performance over the entire 60 GHz band. To maximize the antenna’s efficiency, we have developed a design that differs from those traditionally used for millimeter-wave communication applications. We aim to simultaneously maximize the gain, efficiency, and bandwidth. The reflection coefficient of the proposed design achieves a bandwidth of 20.66% from 53.9 GHz up to 66.3 GHz, covering the entire frequency band of interest. In addition, this proposed structure achieves a maximum realized gain of 11.8 dBi with an estimated radiation efficiency of 91.2%. The proposed antenna is simulated, fabricated, and tested in an anechoic chamber environment. The measurement data show a reasonable agreement with the simulation results, with respect to the bandwidth, gain, and side-lobe level over the operational spectrum.
26 citations
Cited by
More filters
[...]
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality.
Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …
33,785 citations
01 Nov 1984
TL;DR: In this article, a substrate-superstrate printed antenna geometry which allows for large antenna gain is presented, asymptotic formulas for gain, beamwidth, and bandwidth are given, and the bandwidth limitation of the method is discussed.
Abstract: Resonance conditions for a substrate-superstrate printed antenna geometry which allow for large antenna gain are presented. Asymptotic formulas for gain, beamwidth, and bandwidth are given, and the bandwidth limitation of the method is discussed. The method is extended to produce narrow patterns about the horizon, and directive patterns at two different angles.
568 citations
TL;DR: In this article, the authors provide a comprehensive survey to draw a picture of the 6G system in terms of drivers, use cases, usage scenarios, requirements, key performance indicators (KPIs), architecture, and enabling technologies.
Abstract: As of today, the fifth generation (5G) mobile communication system has been rolled out in many countries and the number of 5G subscribers already reaches a very large scale. It is time for academia and industry to shift their attention towards the next generation. At this crossroad, an overview of the current state of the art and a vision of future communications are definitely of interest. This article thus aims to provide a comprehensive survey to draw a picture of the sixth generation (6G) system in terms of drivers, use cases, usage scenarios, requirements, key performance indicators (KPIs), architecture, and enabling technologies. First, we attempt to answer the question of "Is there any need for 6G?" by shedding light on its key driving factors, in which we predict the explosive growth of mobile traffic until 2030, and envision potential use cases and usage scenarios. Second, the technical requirements of 6G are discussed and compared with those of 5G with respect to a set of KPIs in a quantitative manner. Third, the state-of-the-art 6G research efforts and activities from representative institutions and countries are summarized, and a tentative roadmap of definition, specification, standardization, and regulation is projected. Then, we identify a dozen of potential technologies and introduce their principles, advantages, challenges, and open research issues. Finally, the conclusions are drawn to paint a picture of "What 6G may look like?". This survey is intended to serve as an enlightening guideline to spur interests and further investigations for subsequent research and development of 6G communications systems.
475 citations
08 Feb 2021
TL;DR: In this article, the authors provide a comprehensive survey to draw a picture of the 6G system in terms of drivers, use cases, usage scenarios, requirements, key performance indicators (KPIs), architecture, and enabling technologies.
Abstract: As of today, the fifth generation (5G) mobile communication system has been rolled out in many countries and the number of 5G subscribers already reaches a very large scale It is time for academia and industry to shift their attention towards the next generation At this crossroad, an overview of the current state of the art and a vision of future communications are definitely of interest This article thus aims to provide a comprehensive survey to draw a picture of the sixth generation (6G) system in terms of drivers, use cases, usage scenarios, requirements, key performance indicators (KPIs), architecture, and enabling technologies First, we attempt to answer the question of “Is there any need for 6G?” by shedding light on its key driving factors, in which we predict the explosive growth of mobile traffic until 2030, and envision potential use cases and usage scenarios Second, the technical requirements of 6G are discussed and compared with those of 5G with respect to a set of KPIs in a quantitative manner Third, the state-of-the-art 6G research efforts and activities from representative institutions and countries are summarized, and a tentative roadmap of definition, specification, standardization, and regulation is projected Then, we identify a dozen of potential technologies and introduce their principles, advantages, challenges, and open research issues Finally, the conclusions are drawn to paint a picture of “What 6G may look like?” This survey is intended to serve as an enlightening guideline to spur interests and further investigations for subsequent research and development of 6G communications systems
329 citations
01 Jan 2016
TL;DR: Complete with an up–to–date tutorial overview of the field and substantial new, introductory material for each topic, Microstrip Antennas combines in one source a selection of today's most significant and useful articles on microstrip and antenna design.
Abstract: Description: Electrical Engineering/Antennas and Propagation Microstrip Antennas The Analysis and Design of Microstrip Antennas and Arrays Microstrip Antennas contains valuable new information on antenna design and an excellent introduction to the work done in the microstrip antenna area over the past 20 years. The articles are well–chosen and (are) complete with practical design information that is very useful for the working engineer. Stuart Long, University of Houston The editors have done an outstanding job in assembling this updated reprint book. It is a welcome addition to the list of books on microstrip antennas. There is no doubt that it will be a valuable source of information for graduate students, engineers and researchers the original articles are written lucidly and are very informative, and the reprint articles are well chosen. Kai Fong Lee, The University of Toledo Complete with an up–to–date tutorial overview of the field and substantial new, introductory material for each topic, Microstrip Antennas combines in one source a selection of today’s most significant and useful articles on microstrip and antenna design. Eminent experts David M. Pozar and Daniel H. Schaubert guide you through:
210 citations