scispace - formally typeset
Search or ask a question
Author

Han Dolman

Bio: Han Dolman is an academic researcher from VU University Amsterdam. The author has contributed to research in topics: Eddy covariance & Greenhouse gas. The author has an hindex of 15, co-authored 48 publications receiving 5301 citations. Previous affiliations of Han Dolman include Nanjing University of Science and Technology & University of Amsterdam.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the impact of different gap filling methods on the annual sum of net ecosystem exchange (F NEE ) responses is investigated, based on mean diurnal variation, look-up tables (LookUp), and nonlinear regressions (Regr).

1,717 citations

Journal ArticleDOI
Gilberto Pastorello1, Carlo Trotta2, E. Canfora2, Housen Chu1  +300 moreInstitutions (119)
TL;DR: The FLUXNET2015 dataset provides ecosystem-scale data on CO 2 , water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe, and is detailed in this paper.
Abstract: The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.

681 citations

Journal ArticleDOI
TL;DR: In this paper, the diurnal centroid estimates were used to diagnose which atmospheric and physiological processes controlled carbon dioxide, water vapor, and sensible heat fluxes across different ecosystems and climates.
Abstract: [1] Data from a network of eddy covariance stations in Europe and North America (FLUXNET) were analyzed to examine the diurnal patterns of surface energy and carbon fluxes during the summer period across a range of ecosystems and climates. Diurnal trends were quantified by assessing the time of day surface fluxes and meteorological variable reached peak values, using the “diurnal centroid” method; the diurnal centroid enabled us to discern whether the peak activity of the variable of interest is weighted more toward the morning or afternoon. In this paper, diurnal centroid estimates were used to diagnose which atmospheric and physiological processes controlled carbon dioxide, water vapor, and sensible heat fluxes across different ecosystems and climates. Sensitivity tests suggested that the diurnal centroids for latent (LE) and sensible (H) heat flux depend on atmospheric resistance, static stability in the free atmosphere, stomatal response to vapor pressure deficit, and advection. With respect to diurnal trends of surface energy fluxes at FLUXNET sites, maximum LE occurred later in the day relative to H at most tall forests with continental climates. The lag between LE and H was reduced or reversed at sites that were influenced by advection or by afternoon stomatal closure. The time of peak carbon uptake of temperate forests occurred earlier relative to the temporal peak of photosynthetically active radiation, as compared to boreal forests. The timing of this peak occurred earlier during periods with low soil water content, as it did during the summer in Mediterranean climates. In this case, the diurnal centroid for the CO2 flux was influenced by the response of respiration and photosynthesis to increasing afternoon temperature and by afternoon stomatal closure.

282 citations


Cited by
More filters
Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Journal ArticleDOI
TL;DR: The FLUXNET project as mentioned in this paper is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere.
Abstract: FLUXNET is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long-term and continuous basis. Vegetation under study includes temperate conifer and broadleaved (deciduous and evergreen) forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra. Sites exist on five continents and their latitudinal distribution ranges from 70°N to 30°S. FLUXNET has several primary functions. First, it provides infrastructure for compiling, archiving, and distributing carbon, water, and energy flux measurement, and meteorological, plant, and soil data to the science community. (Data and site information are available online at the FLUXNET Web site, http://www-eosdis.ornl.gov/FLUXNET/.) Second, the project supports calibration and flux intercomparison activities. This activity ensures that data from the regional networks are intercomparable. And third, FLUXNET supports the synthesis, discussion, and communication of ideas and data by supporting project scientists, workshops, and visiting scientists. The overarching goal is to provide information for validating computations of net primary productivity, evaporation, and energy absorption that are being generated by sensors mounted on the NASA Terra satellite. Data being compiled by FLUXNET are being used to quantify and compare magnitudes and dynamics of annual ecosystem carbon and water balances, to quantify the response of stand-scale carbon dioxide and water vapor flux densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil–plant–atmosphere trace gas exchange models. Findings so far include 1) net CO 2 exchange of temperate broadleaved forests increases by about 5.7 g C m −2 day −1 for each additional day that the growing season is extended; 2) the sensitivity of net ecosystem CO 2 exchange to sunlight doubles if the sky is cloudy rather than clear; 3) the spectrum of CO 2 flux density exhibits peaks at timescales of days, weeks, and years, and a spectral gap exists at the month timescale; 4) the optimal temperature of net CO 2 exchange varies with mean summer temperature; and 5) stand age affects carbon dioxide and water vapor flux densities.

3,162 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyse the effect of extrapolation of night-time values of ecosystem respiration into the daytime; this is usually done with a temperature response function that is derived from long-term data sets.
Abstract: This paper discusses the advantages and disadvantages of the different methods that separate net ecosystem exchange (NEE) into its major components, gross ecosystem carbon uptake (GEP) and ecosystem respiration (Reco). In particular, we analyse the effect of the extrapolation of night-time values of ecosystem respiration into the daytime; this is usually done with a temperature response function that is derived from long-term data sets. For this analysis, we used 16 one-year-long data sets of carbon dioxide exchange measurements from European and US-American eddy covariance networks. These sites span from the boreal to Mediterranean climates, and include deciduous and evergreen forest, scrubland and crop ecosystems. We show that the temperature sensitivity of Reco, derived from long-term (annual) data sets, does not reflect the short-term temperature sensitivity that is effective when extrapolating from night- to daytime. Specifically, in summer active ecosystems the long

2,881 citations