scispace - formally typeset
Search or ask a question
Author

Hang Ma

Bio: Hang Ma is an academic researcher from Simon Fraser University. The author has contributed to research in topics: Path (graph theory) & Heuristics. The author has an hindex of 21, co-authored 52 publications receiving 1225 citations. Previous affiliations of Hang Ma include McGill University & University of Southern California.

Papers published on a yearly basis

Papers
More filters
Posted Content
TL;DR: A new grid-based benchmark for MAPF is introduced, and it is demonstrated experimentally that it poses a challenge to contemporary MAPF algorithms.
Abstract: The MAPF problem is the fundamental problem of planning paths for multiple agents, where the key constraint is that the agents will be able to follow these paths concurrently without colliding with each other. Applications of MAPF include automated warehouses and autonomous vehicles. Research on MAPF has been flourishing in the past couple of years. Different MAPF research papers make different assumptions, e.g., whether agents can traverse the same road at the same time, and have different objective functions, e.g., minimize makespan or sum of agents' actions costs. These assumptions and objectives are sometimes implicitly assumed or described informally. This makes it difficult to establish appropriate baselines for comparison in research papers, as well as making it difficult for practitioners to find the papers relevant to their concrete application. This paper aims to fill this gap and support researchers and practitioners by providing a unifying terminology for describing common MAPF assumptions and objectives. In addition, we also provide pointers to two MAPF benchmarks. In particular, we introduce a new grid-based benchmark for MAPF, and demonstrate experimentally that it poses a challenge to contemporary MAPF algorithms.

197 citations

Proceedings Article
12 Feb 2016
TL;DR: It is proved that exchange operations make all PERR instances solvable, and it is shown that PERR is NP-hard to approximate within any factor less than 4/3 for makespan minimization and is NP -hard to solve for flowtime minimization, even when there are only two types of packages.
Abstract: We study transportation problems where robots have to deliver packages and can transfer the packages among each other Specifically, we study the package-exchange robot-routing problem (PERR), where each robot carries one package, any two robots in adjacent locations can exchange their packages, and each package needs to be delivered to a given destination We prove that exchange operations make all PERR instances solvable Yet, we also show that PERR is NP-hard to approximate within any factor less than 4/3 for makespan minimization and is NP-hard to solve for flowtime minimization, even when there are only two types of packages Our proof techniques also generate new insights into other transportation problems, for example, into the hardness of approximating optimal solutions to the standard multi-agent path-finding problem (MAPF) Finally, we present optimal and suboptimal PERR solvers that are inspired by MAPF solvers, namely a flow-based ILP formulation and an adaptation of conflict-based search Our empirical results demonstrate that these solvers scale well and that PERR instances often have smaller makespans and flowtimes than the corresponding MAPF instances

115 citations

Proceedings Article
12 Jun 2016
TL;DR: This work introduces MAPF-POST, a novel approach that makes use of a simple temporal network to postprocess the output of a MAPF solver in polynomial time to create a plan-execution schedule that can be executed on robots.
Abstract: Multi-Agent Path Finding (MAPF) is well studied in both AI and robotics. Given a discretized environment and agents with assigned start and goal locations, MAPF solvers from AI find collision-free paths for hundreds of agents with user-provided sub-optimality guarantees. However, they ignore that actual robots are subject to kinematic constraints (such as finite maximum velocity limits) and suffer from imperfect plan-execution capabilities. We therefore introduce MAPF-POST, a novel approach that makes use of a simple temporal network to postprocess the output of a MAPF solver in polynomial time to create a plan-execution schedule that can be executed on robots. This schedule works on non-holonomic robots, takes their maximum translational and rotational velocities into account, provides a guaranteed safety distance between them, and exploits slack to absorb imperfect plan executions and avoid time-intensive replanning in many cases. We evaluate MAPF-POST in simulation and on differential-drive robots, showcasing the practicality of our approach.

106 citations

Journal ArticleDOI
17 Jul 2019
TL;DR: This work explores the space of all possible partial priority orderings as part of a novel systematic and conflict-driven combinatorial search framework and develops new theoretical results that explore the limitations of prioritized planning, in terms of completeness and optimality, for the first time.
Abstract: We study prioritized planning for Multi-Agent Path Finding (MAPF). Existing prioritized MAPF algorithms depend on rule-of-thumb heuristics and random assignment to determine a fixed total priority ordering of all agents a priori. We instead explore the space of all possible partial priority orderings as part of a novel systematic and conflict-driven combinatorial search framework. In a variety of empirical comparisons, we demonstrate state-of-the-art solution qualities and success rates, often with similar runtimes to existing algorithms. We also develop new theoretical results that explore the limitations of prioritized planning, in terms of completeness and optimality, for the first time.

100 citations

Proceedings Article
15 Jun 2018
TL;DR: Different admissible heuristics for CBS by aggre- gating cardinal conflicts among agents are introduced, and CBS with these heuristic outperforms previous state-of-the- art CBS variants by up to a factor of two.
Abstract: Conflict-Based Search (CBS) and its enhancements are among the strongest algorithms for the multi-agent path-finding problem. However,existing variants of CBS do not use any heuristics that estimate future work. In this paper, we introduce different admissible heuristics for CBS by aggregating cardinal conflicts among agents. In our experiments, CBS with these heuristics outperforms previous state-of-the-art CBS variants by up to a factor of five.

94 citations


Cited by
More filters
01 Jan 1979
TL;DR: This special issue aims at gathering the recent advances in learning with shared information methods and their applications in computer vision and multimedia analysis and addressing interesting real-world computer Vision and multimedia applications.
Abstract: In the real world, a realistic setting for computer vision or multimedia recognition problems is that we have some classes containing lots of training data and many classes contain a small amount of training data. Therefore, how to use frequent classes to help learning rare classes for which it is harder to collect the training data is an open question. Learning with Shared Information is an emerging topic in machine learning, computer vision and multimedia analysis. There are different level of components that can be shared during concept modeling and machine learning stages, such as sharing generic object parts, sharing attributes, sharing transformations, sharing regularization parameters and sharing training examples, etc. Regarding the specific methods, multi-task learning, transfer learning and deep learning can be seen as using different strategies to share information. These learning with shared information methods are very effective in solving real-world large-scale problems. This special issue aims at gathering the recent advances in learning with shared information methods and their applications in computer vision and multimedia analysis. Both state-of-the-art works, as well as literature reviews, are welcome for submission. Papers addressing interesting real-world computer vision and multimedia applications are especially encouraged. Topics of interest include, but are not limited to: • Multi-task learning or transfer learning for large-scale computer vision and multimedia analysis • Deep learning for large-scale computer vision and multimedia analysis • Multi-modal approach for large-scale computer vision and multimedia analysis • Different sharing strategies, e.g., sharing generic object parts, sharing attributes, sharing transformations, sharing regularization parameters and sharing training examples, • Real-world computer vision and multimedia applications based on learning with shared information, e.g., event detection, object recognition, object detection, action recognition, human head pose estimation, object tracking, location-based services, semantic indexing. • New datasets and metrics to evaluate the benefit of the proposed sharing ability for the specific computer vision or multimedia problem. • Survey papers regarding the topic of learning with shared information. Authors who are unsure whether their planned submission is in scope may contact the guest editors prior to the submission deadline with an abstract, in order to receive feedback.

1,758 citations

Journal ArticleDOI
TL;DR: The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping, and dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing.
Abstract: The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas.

333 citations

Journal ArticleDOI
TL;DR: The proposed method can compute safe and smooth trajectories for hundreds of quadrotors in dense environments with obstacles in a few minutes, and is demonstrated on a quadrotor swarm navigating in a warehouse setting.
Abstract: We describe a method for multirobot trajectory planning in known, obstacle-rich environments. We demonstrate our approach on a quadrotor swarm navigating in a warehouse setting. Our method consists of following three stages: 1) roadmap generation that generates sparse roadmaps annotated with possible interrobot collisions; 2) discrete planning that finds valid execution schedules in discrete time and space; 3) continuous refinement that creates smooth trajectories. We account for the downwash effect of quadrotors, allowing safe flight in dense formations. We demonstrate computational efficiency in simulation with up to 200 robots and physical plausibility with an experiment on 32 nano-quadrotors. Our approach can compute safe and smooth trajectories for hundreds of quadrotors in dense environments with obstacles in a few minutes.

228 citations

Posted Content
TL;DR: A new grid-based benchmark for MAPF is introduced, and it is demonstrated experimentally that it poses a challenge to contemporary MAPF algorithms.
Abstract: The MAPF problem is the fundamental problem of planning paths for multiple agents, where the key constraint is that the agents will be able to follow these paths concurrently without colliding with each other. Applications of MAPF include automated warehouses and autonomous vehicles. Research on MAPF has been flourishing in the past couple of years. Different MAPF research papers make different assumptions, e.g., whether agents can traverse the same road at the same time, and have different objective functions, e.g., minimize makespan or sum of agents' actions costs. These assumptions and objectives are sometimes implicitly assumed or described informally. This makes it difficult to establish appropriate baselines for comparison in research papers, as well as making it difficult for practitioners to find the papers relevant to their concrete application. This paper aims to fill this gap and support researchers and practitioners by providing a unifying terminology for describing common MAPF assumptions and objectives. In addition, we also provide pointers to two MAPF benchmarks. In particular, we introduce a new grid-based benchmark for MAPF, and demonstrate experimentally that it poses a challenge to contemporary MAPF algorithms.

197 citations

Proceedings Article
05 Jun 2017
TL;DR: Analytical and experimental comparisons show that no algorithm dominates all others in all circumstances in the multi-agent pathfinding field, and list important future research directions.
Abstract: Multi-agent pathfinding (MAPF) is an area of expanding research interest. At the core of this research area, numerous diverse search-based techniques were developed in the past 6 years for optimally solving MAPF under the sum-of-costs objective function. In this paper we survey these techniques, while placing them into the wider context of the MAPF field of research. Finally, we provide analytical and experimental comparisons that show that no algorithm dominates all others in all circumstances. We conclude by listing important future research directions.

132 citations