scispace - formally typeset
Search or ask a question
Author

Hang Ruan

Other affiliations: York University
Bio: Hang Ruan is an academic researcher from University of York. The author has contributed to research in topics: Beamforming & Adaptive beamformer. The author has an hindex of 7, co-authored 17 publications receiving 363 citations. Previous affiliations of Hang Ruan include York University.

Papers
More filters
Journal ArticleDOI
TL;DR: Simulations show that LOCSME outperforms previously reported RAB algorithms and has a performance very close to the optimum.
Abstract: In this work, we propose a low-complexity robust adaptive beamforming (RAB) technique which estimates the steering vector using a Low-Complexity Shrinkage-Based Mismatch Estimation (LOCSME) algorithm. The proposed LOCSME algorithm estimates the covariance matrix of the input data and the interference-plus-noise covariance (INC) matrix by using the Oracle Approximating Shrinkage (OAS) method. LOCSME only requires prior knowledge of the angular sector in which the actual steering vector is located and the antenna array geometry. LOCSME does not require a costly optimization algorithm and does not need to know extra information from the interferers, which avoids direction finding for all interferers. Simulations show that LOCSME outperforms previously reported RAB algorithms and has a performance very close to the optimum.

119 citations

Journal ArticleDOI
TL;DR: In this paper, a low-complexity robust adaptive beamforming (RAB) technique which estimates the steering vector using a Low-Complexity Shrinkage-Based Mismatch Estimation (LOCSME) algorithm is proposed.
Abstract: In this work, we propose a low-complexity robust adaptive beamforming (RAB) technique which estimates the steering vector using a Low-Complexity Shrinkage-Based Mismatch Estimation (LOCSME) algorithm. The proposed LOCSME algorithm estimates the covariance matrix of the input data and the interference-plus-noise covariance (INC) matrix by using the Oracle Approximating Shrinkage (OAS) method. LOCSME only requires prior knowledge of the angular sector in which the actual steering vector is located and the antenna array geometry. LOCSME does not require a costly optimization algorithm and does not need to know extra information from the interferers, which avoids direction finding for all interferers. Simulations show that LOCSME outperforms previously reported RAB algorithms and has a performance very close to the optimum.

115 citations

Journal ArticleDOI
TL;DR: This paper presents cost-effective low-rank techniques for designing robust adaptive beamforming algorithms based on the exploitation of the cross-correlation between the array observation data and the output of the beamformer, resulting in the proposed orthogonal Krylov subspace projection mismatch estimation (OKSPME) method.
Abstract: This paper presents cost-effective low-rank techniques for designing robust adaptive beamforming (RAB) algorithms. The proposed algorithms are based on the exploitation of the cross-correlation between the array observation data and the output of the beamformer. First, we construct a general linear equation considered in large dimensions whose solution yields the steering vector mismatch. Then, we employ the idea of the full orthogonalization method (FOM), an orthogonal Krylov subspace based method, to iteratively estimate the steering vector mismatch in a reduced-dimensional subspace, resulting in the proposed orthogonal Krylov subspace projection mismatch estimation (OKSPME) method. We also devise adaptive algorithms based on stochastic gradient (SG) and conjugate gradient (CG) techniques to update the beamforming weights with low complexity and avoid any costly matrix inversion. The main advantages of the proposed low-rank and mismatch estimation techniques are their cost-effectiveness when dealing with high-dimension subspaces or large sensor arrays. Simulations results show excellent performance in terms of the output signal-to-interference-plus-noise ratio (SINR) of the beamformer among all the compared RAB methods.

84 citations

Proceedings ArticleDOI
28 Dec 2015
TL;DR: This paper presents cost-effective low-rank techniques for designing robust adaptive beamforming algorithms based on the exploitation of the cross-correlation between the array observation data and the output of the beamformer, resulting in the proposed orthogonal Krylov subspace projection mismatch estimation (OKSPME) method.
Abstract: This work presents a cost-effective low-rank technique for designing robust adaptive beamforming (RAB) algorithms. The proposed technique is based on low-rank modelling of the mismatch and exploitation of the cross-correlation between the received data and the output of the beamformer. We construct a linear system of equations which computes the steering vector mismatch based on prior information about the level of mismatch, and then we employ an orthogonal Krylov subspace based method to iteratively estimate the steering vector mismatch in a reduced-dimensional subspace, resulting in the proposed orthogonal Krylov subspace projection mismatch estimation (OKSPME) method. Simulation results show excellent performance of OKSPME in terms of the beamformer output signal-to-interference-plus-noise ratio (SINR) as compared to existing RAB algorithms.

41 citations

Journal ArticleDOI
TL;DR: The proposed RDB approach mitigates the effects of channel errors in wireless networks equipped with relays based on the exploitation of the cross-correlation between the received data from the relays at the destination and the system output and low-rank techniques.
Abstract: In this work, we present a novel robust distributed beamforming (RDB) approach based on low-rank and cross-correlation techniques. The proposed RDB approach mitigates the effects of channel errors in wireless networks equipped with relays based on the exploitation of the cross-correlation between the received data from the relays at the destination and the system output and low-rank techniques. The relay nodes are equipped with an amplify-and-forward (AF) protocol and the channel errors are modeled using an additive matrix perturbation, which results in degradation of the system performance. The proposed method, denoted low-rank and cross-correlation RDB (LRCC-RDB), considers a total relay transmit power constraint in the system and the goal of maximizing the output signal-to-interference-plus-noise ratio (SINR). We carry out a performance analysis of the proposed LRCC-RDB technique along with a computational complexity study. The proposed LRCC-RDB does not require any costly online optimization procedure and simulations show an excellent performance as compared to previously reported algorithms.

38 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A novel method named spatial power spectrum sampling (SPSS) is proposed to reconstruct the INC matrix more efficiently, with the corresponding beamforming algorithm developed, where the covariance matrix taper (CMT) technique is employed to further improve its performance.
Abstract: Recently, a robust adaptive beamforming (RAB) technique based on interference-plus-noise covariance (INC) matrix reconstruction has been proposed, which utilizes the Capon spectrum estimator integrated over a region separated from the direction of the desired signal. Inspired by the sampling and reconstruction idea, in this paper, a novel method named spatial power spectrum sampling (SPSS) is proposed to reconstruct the INC matrix more efficiently, with the corresponding beamforming algorithm developed, where the covariance matrix taper (CMT) technique is employed to further improve its performance. Simulation results are provided to demonstrate the effectiveness of the proposed method.

118 citations

Journal ArticleDOI
TL;DR: This paper presents cost-effective low-rank techniques for designing robust adaptive beamforming algorithms based on the exploitation of the cross-correlation between the array observation data and the output of the beamformer, resulting in the proposed orthogonal Krylov subspace projection mismatch estimation (OKSPME) method.
Abstract: This paper presents cost-effective low-rank techniques for designing robust adaptive beamforming (RAB) algorithms. The proposed algorithms are based on the exploitation of the cross-correlation between the array observation data and the output of the beamformer. First, we construct a general linear equation considered in large dimensions whose solution yields the steering vector mismatch. Then, we employ the idea of the full orthogonalization method (FOM), an orthogonal Krylov subspace based method, to iteratively estimate the steering vector mismatch in a reduced-dimensional subspace, resulting in the proposed orthogonal Krylov subspace projection mismatch estimation (OKSPME) method. We also devise adaptive algorithms based on stochastic gradient (SG) and conjugate gradient (CG) techniques to update the beamforming weights with low complexity and avoid any costly matrix inversion. The main advantages of the proposed low-rank and mismatch estimation techniques are their cost-effectiveness when dealing with high-dimension subspaces or large sensor arrays. Simulations results show excellent performance in terms of the output signal-to-interference-plus-noise ratio (SINR) of the beamformer among all the compared RAB methods.

84 citations

Journal ArticleDOI
TL;DR: A new RAB algorithm based on interference-plus-noise covariance (INC) matrix reconstruction and steering vector (SV) estimation is proposed, which outperforms the existing RAB techniques in terms of the overall performance in cases of various mismatches.
Abstract: To ensure link reliability and signal receiving quality, robust adaptive beamforming (RAB) is vital important in mobile communications. In this paper, we propose a new RAB algorithm based on interference-plus-noise covariance (INC) matrix reconstruction and steering vector (SV) estimation. In this method, the INC matrix is reconstructed by estimating all interferences SVs and powers, as well as the noise power. The interference SVs are estimated by using the Capon spatial spectrum together with robust Capon beamforming principle, subsequently the interference powers are estimated based on the orthogonality between different signal SVs. On the other hand, the desired signal SV is estimated via maximizing the beamformer output power by solving a quadratic convex optimization problem. The proposed algorithm only needs to know in advance the array geometry and angular sector, in which the desired signal lies. Simulation results indicate that the proposed algorithm outperforms the existing RAB techniques in terms of the overall performance in cases of various mismatches.

81 citations

Journal ArticleDOI
TL;DR: Simulation results are presented for time-varying wireless environments and show that the proposed JPDF minimum-SER receive processing strategy and algorithms achieve a superior performance than existing methods with a reduced computational complexity.
Abstract: In this work, we propose a novel adaptive reduced-rank receive processing strategy based on joint preprocessing, decimation and filtering (JPDF) for large-scale multiple-antenna systems. In this scheme, a reduced-rank framework is employed for linear receive processing and multiuser interference suppression based on the minimization of the symbol-error-rate (SER) cost function. We present a structure with multiple processing branches that performs a dimensionality reduction, where each branch contains a group of jointly optimized preprocessing and decimation units, followed by a linear receive filter. We then develop stochastic gradient (SG) algorithms to compute the parameters of the preprocessing and receive filters, along with a low-complexity decimation technique for both binary phase shift keying (BPSK) and $M$ -ary quadrature amplitude modulation (QAM) symbols. In addition, an automatic parameter selection scheme is proposed to further improve the convergence performance of the proposed reduced-rank algorithms. Simulation results are presented for time-varying wireless environments and show that the proposed JPDF minimum-SER receive processing strategy and algorithms achieve a superior performance than existing methods with a reduced computational complexity.

81 citations