scispace - formally typeset
Search or ask a question
Author

Hang Zhao

Other affiliations: Zhejiang University, Nvidia, New York University  ...read more
Bio: Hang Zhao is an academic researcher from Tsinghua University. The author has contributed to research in topics: Computer science & Engineering. The author has an hindex of 32, co-authored 83 publications receiving 12696 citations. Previous affiliations of Hang Zhao include Zhejiang University & Nvidia.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a plasmonic patch antenna was used to convert linear polarized light into circular polarized light in the visible range (633nm) by further exploiting the dimer patch antenna structure composed of different metals.
Abstract: A quarter-wave plate using plasmonic patch antennas has been investigated. The nanostructures can convert linear polarized light into circular polarized light in the visible range (633 nm). By further exploiting the dimer patch antenna structure composed of different metals, directional emission (with a directivity of 4.8) of circular polarized light (with a conversion efficiency of 27.8%) in an oblique direction with respect to the incident light is enabled. Compared with previous designs, the proposed structures are ultra-thin, and are more suitable for integration applications.

14 citations

Book ChapterDOI
06 Sep 2014
TL;DR: It is shown that recording multiple images, transformed in the octic group, with a sensor of asymmetric sub-pixel layout increases the spatial sampling compared to a conventional sensor with a rectilinear grid of pixels and hence increases the image resolution.
Abstract: This paper presents a novel super-resolution framework by exploring the properties of non-conventional pixel layouts and shapes. We show that recording multiple images, transformed in the octic group, with a sensor of asymmetric sub-pixel layout increases the spatial sampling compared to a conventional sensor with a rectilinear grid of pixels and hence increases the image resolution. We further prove a theoretical bound for achieving well-posed super-resolution with a designated magnification factor w.r.t. the number and distribution of sub-pixels. We also propose strategies for selecting good sub-pixel layouts and effective super-resolution algorithms for our setup. The experimental results validate the proposed theory and solution, which have the potential to guide the future CCD layout design with super-resolution functionality.

13 citations

Proceedings ArticleDOI
TL;DR: An advanced computational imaging system with an optical architecture that enables simultaneous and dynamic pupil-plane and image-plane coding accommodating several task-specific applications is described.
Abstract: United States. Dept. of Defense. Assistant Secretary of Defense for Research & Engineering (Air Force contract #FA8721-05-C-002)

13 citations

Posted Content
TL;DR: Opposite to traditional knowledge distillation, where the student is designed to be lightweight and inferior to the teacher, it is observed that a multimodal student model consistently rectifies pseudo labels and generalizes better than its teacher.
Abstract: The popularity of multimodal sensors and the accessibility of the Internet have brought us a massive amount of unlabeled multimodal data Since existing datasets and well-trained models are primarily unimodal, the modality gap between a unimodal network and unlabeled multimodal data poses an interesting problem: how to transfer a pre-trained unimodal network to perform the same task on unlabeled multimodal data? In this work, we propose multimodal knowledge expansion (MKE), a knowledge distillation-based framework to effectively utilize multimodal data without requiring labels Opposite to traditional knowledge distillation, where the student is designed to be lightweight and inferior to the teacher, we observe that a multimodal student model consistently denoises pseudo labels and generalizes better than its teacher Extensive experiments on four tasks and different modalities verify this finding Furthermore, we connect the mechanism of MKE to semi-supervised learning and offer both empirical and theoretical explanations to understand the denoising capability of a multimodal student

10 citations

Journal ArticleDOI
TL;DR: In this paper, the photothermal effects in plasmonic waveguides (PWs) are investigated in the cross section and the thermal feature sizes of the PWs are the main factors limiting the integration density.
Abstract: The inevitable light absorption in plasmonic waveguides (PWs) gives rise to heating of waveguides themselves Here the photothermal effects in nanowire PWs, slot PWs, channel PWs, dielectric-loaded PWs and hybrid PWs are investigated in the cross section The resistive heating is significant for all waveguides The thermal feature sizes of the PWs are the main factors limiting the integration density The copper PWs show the largest temperature rise compared with the gold PWs, the silver PWs and the aluminum PWs These findings unveil the physical properties of PWs from the photothermal perspective and provide insights into the underlying factors influencing the adoption of PWs in optical interconnect

10 citations


Cited by
More filters
Proceedings ArticleDOI
21 Jul 2017
TL;DR: This paper exploits the capability of global context information by different-region-based context aggregation through the pyramid pooling module together with the proposed pyramid scene parsing network (PSPNet) to produce good quality results on the scene parsing task.
Abstract: Scene parsing is challenging for unrestricted open vocabulary and diverse scenes. In this paper, we exploit the capability of global context information by different-region-based context aggregation through our pyramid pooling module together with the proposed pyramid scene parsing network (PSPNet). Our global prior representation is effective to produce good quality results on the scene parsing task, while PSPNet provides a superior framework for pixel-level prediction. The proposed approach achieves state-of-the-art performance on various datasets. It came first in ImageNet scene parsing challenge 2016, PASCAL VOC 2012 benchmark and Cityscapes benchmark. A single PSPNet yields the new record of mIoU accuracy 85.4% on PASCAL VOC 2012 and accuracy 80.2% on Cityscapes.

10,189 citations

Journal ArticleDOI
TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

7,139 citations

Book ChapterDOI
Liang-Chieh Chen1, Yukun Zhu1, George Papandreou1, Florian Schroff1, Hartwig Adam1 
08 Sep 2018
TL;DR: This work extends DeepLabv3 by adding a simple yet effective decoder module to refine the segmentation results especially along object boundaries and applies the depthwise separable convolution to both Atrous Spatial Pyramid Pooling and decoder modules, resulting in a faster and stronger encoder-decoder network.
Abstract: Spatial pyramid pooling module or encode-decoder structure are used in deep neural networks for semantic segmentation task. The former networks are able to encode multi-scale contextual information by probing the incoming features with filters or pooling operations at multiple rates and multiple effective fields-of-view, while the latter networks can capture sharper object boundaries by gradually recovering the spatial information. In this work, we propose to combine the advantages from both methods. Specifically, our proposed model, DeepLabv3+, extends DeepLabv3 by adding a simple yet effective decoder module to refine the segmentation results especially along object boundaries. We further explore the Xception model and apply the depthwise separable convolution to both Atrous Spatial Pyramid Pooling and decoder modules, resulting in a faster and stronger encoder-decoder network. We demonstrate the effectiveness of the proposed model on PASCAL VOC 2012 and Cityscapes datasets, achieving the test set performance of 89% and 82.1% without any post-processing. Our paper is accompanied with a publicly available reference implementation of the proposed models in Tensorflow at https://github.com/tensorflow/models/tree/master/research/deeplab.

7,113 citations

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations

Posted Content
TL;DR: The proposed `DeepLabv3' system significantly improves over the previous DeepLab versions without DenseCRF post-processing and attains comparable performance with other state-of-art models on the PASCAL VOC 2012 semantic image segmentation benchmark.
Abstract: In this work, we revisit atrous convolution, a powerful tool to explicitly adjust filter's field-of-view as well as control the resolution of feature responses computed by Deep Convolutional Neural Networks, in the application of semantic image segmentation. To handle the problem of segmenting objects at multiple scales, we design modules which employ atrous convolution in cascade or in parallel to capture multi-scale context by adopting multiple atrous rates. Furthermore, we propose to augment our previously proposed Atrous Spatial Pyramid Pooling module, which probes convolutional features at multiple scales, with image-level features encoding global context and further boost performance. We also elaborate on implementation details and share our experience on training our system. The proposed `DeepLabv3' system significantly improves over our previous DeepLab versions without DenseCRF post-processing and attains comparable performance with other state-of-art models on the PASCAL VOC 2012 semantic image segmentation benchmark.

5,691 citations