scispace - formally typeset
Search or ask a question
Author

Hanlin Zhang

Other affiliations: Towson University
Bio: Hanlin Zhang is an academic researcher from Qingdao University. The author has contributed to research in topics: Cloud computing & Computer science. The author has an hindex of 16, co-authored 55 publications receiving 2111 citations. Previous affiliations of Hanlin Zhang include Towson University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: The relationship between cyber-physical systems and IoT, both of which play important roles in realizing an intelligent cyber- physical world, are explored and existing architectures, enabling technologies, and security and privacy issues in IoT are presented to enhance the understanding of the state of the art IoT development.
Abstract: Fog/edge computing has been proposed to be integrated with Internet of Things (IoT) to enable computing services devices deployed at network edge, aiming to improve the user’s experience and resilience of the services in case of failures. With the advantage of distributed architecture and close to end-users, fog/edge computing can provide faster response and greater quality of service for IoT applications. Thus, fog/edge computing-based IoT becomes future infrastructure on IoT development. To develop fog/edge computing-based IoT infrastructure, the architecture, enabling techniques, and issues related to IoT should be investigated first, and then the integration of fog/edge computing and IoT should be explored. To this end, this paper conducts a comprehensive overview of IoT with respect to system architecture, enabling technologies, security and privacy issues, and present the integration of fog/edge computing and IoT, and applications. Particularly, this paper first explores the relationship between cyber-physical systems and IoT, both of which play important roles in realizing an intelligent cyber-physical world. Then, existing architectures, enabling technologies, and security and privacy issues in IoT are presented to enhance the understanding of the state of the art IoT development. To investigate the fog/edge computing-based IoT, this paper also investigate the relationship between IoT and fog/edge computing, and discuss issues in fog/edge computing-based IoT. Finally, several applications, including the smart grid, smart transportation, and smart cities, are presented to demonstrate how fog/edge computing-based IoT to be implemented in real-world applications.

2,057 citations

Journal ArticleDOI
TL;DR: A cloud storage auditing scheme for group users, which greatly reduces the computation burden on the user side and blind data using simple operations in the phase of data uploading and data auditing to protect the data privacy against the TPM.

102 citations

Proceedings ArticleDOI
01 Aug 2016
TL;DR: A taxonomy is developed to review and describe existing research efforts, and a focus on inter-cell interference, handover performance, and energy efficiency as the key techniques to addressing the most pressing challenges.
Abstract: Within the foreseeable future, the growing number of mobile devices, and their diversity, will challenge the current network architecture. Furthermore, users will expect greater data rates, lower latency, lower packet drop rates, etc. in future wireless networks. Ultra Dense Networks (UDN), considered to be one of the best ways to meet user expectations and support future wireless network deployment, will face multiple significant hurdles, including interference, mobility, and cost. In this paper, we review existing research efforts toward addressing those challenges and present future avenues for research. We first develop a taxonomy to review and describe existing research efforts. Next, we focus on inter-cell interference, handover performance, and energy efficiency as the key techniques to addressing the most pressing challenges. Finally, we present several future research directions, including emergent Internet-of-Things (IoT) applications, security and privacy, modeling and realistic simulations, and relevant techniques.

89 citations

Journal ArticleDOI
TL;DR: A novel Accumulative Authentication Tag (AAT) based on the symmetric-key cryptography to generate an authentication tag for each keyword is designed and the security analysis and the performance evaluation results show that the proposed scheme is secure and efficient.
Abstract: Verifiable Searchable Symmetric Encryption, as an important cloud security technique, allows users to retrieve the encrypted data from the cloud through keywords and verify the validity of the returned results. Dynamic update for cloud data is one of the most common and fundamental requirements for data owners in such schemes. To the best of our knowledge, the existing verifiable SSE schemes supporting data dynamic update are all based on asymmetric-key cryptography verification, which involves time-consuming operations. The overhead of verification may become a significant burden due to the sheer amount of cloud data. Therefore, how to achieve keyword search over dynamic encrypted cloud data with efficient verification is a critical unsolved problem. To address this problem, we explore achieving keyword search over dynamic encrypted cloud data with symmetric-key based verification and propose a practical scheme in this paper. In order to support the efficient verification of dynamic data, we design a novel Accumulative Authentication Tag ( AAT ) based on the symmetric-key cryptography to generate an authentication tag for each keyword. Benefiting from the accumulation property of our designed AAT , the authentication tag can be conveniently updated when dynamic operations on cloud data occur. In order to achieve efficient data update, we design a new secure index composed by a search table ST based on the orthogonal list and a verification list VL containing AATs. Owing to the connectivity and the flexibility of ST, the update efficiency can be significantly improved. The security analysis and the performance evaluation results show that the proposed scheme is secure and efficient.

70 citations

Journal ArticleDOI
TL;DR: This scheme is the first to define reconstruction outsourcing concept in all cloud storage schemes for EHRs based on secret sharing, and the results of outsourcing reconstruction can be verified by healthcare centers or patients in the scheme.
Abstract: Deploying electronic health records (EHRs) is now an undisputable trend in healthcare systems. Through affording benefits like flexibility and low cost, the cutting-cloud cloud storage is becoming a popular solution to store a massive amount of EHRs to depress the local storage. Nevertheless, storing sensitive information such as health records on the cloud incurs severe security and privacy risks. In this paper, we propose a novel cloud storage system for EHRs which fully ensures the data privacy by employing the Shamir’s secret sharing. In this system, an EHR is divided into multiple segments by a healthcare center, and the segments are distributed to numerous cloud servers. When retrieving the EHR, the healthcare center captures segments from partial cloud servers and reconstructs the EHRs. Meanwhile, in reality, the reconstruction of a shared EHR could be much burdensome for a healthcare center or a patient, we thus propose a practical cloud storage scheme which outsources the reconstruction of a shared EHR to a cloud computing service provider. Such a solution can drastically boost the efficiency of the proposed scheme. As far as we know, our scheme is the first to define reconstruction outsourcing concept in all cloud storage schemes for EHRs based on secret sharing, and the results of outsourcing reconstruction can be verified by healthcare centers or patients in our scheme. The theoretical analysis and experimental results also support that our proposed scheme is secure and efficient.

40 citations


Cited by
More filters
Posted Content
TL;DR: This paper defines and explores proofs of retrievability (PORs), a POR scheme that enables an archive or back-up service to produce a concise proof that a user can retrieve a target file F, that is, that the archive retains and reliably transmits file data sufficient for the user to recover F in its entirety.
Abstract: In this paper, we define and explore proofs of retrievability (PORs). A POR scheme enables an archive or back-up service (prover) to produce a concise proof that a user (verifier) can retrieve a target file F, that is, that the archive retains and reliably transmits file data sufficient for the user to recover F in its entirety.A POR may be viewed as a kind of cryptographic proof of knowledge (POK), but one specially designed to handle a large file (or bitstring) F. We explore POR protocols here in which the communication costs, number of memory accesses for the prover, and storage requirements of the user (verifier) are small parameters essentially independent of the length of F. In addition to proposing new, practical POR constructions, we explore implementation considerations and optimizations that bear on previously explored, related schemes.In a POR, unlike a POK, neither the prover nor the verifier need actually have knowledge of F. PORs give rise to a new and unusual security definition whose formulation is another contribution of our work.We view PORs as an important tool for semi-trusted online archives. Existing cryptographic techniques help users ensure the privacy and integrity of files they retrieve. It is also natural, however, for users to want to verify that archives do not delete or modify files prior to retrieval. The goal of a POR is to accomplish these checks without users having to download the files themselves. A POR can also provide quality-of-service guarantees, i.e., show that a file is retrievable within a certain time bound.

1,783 citations

Journal ArticleDOI
TL;DR: A comprehensive survey, analyzing how edge computing improves the performance of IoT networks and considers security issues in edge computing, evaluating the availability, integrity, and the confidentiality of security strategies of each group, and proposing a framework for security evaluation of IoT Networks with edge computing.
Abstract: The Internet of Things (IoT) now permeates our daily lives, providing important measurement and collection tools to inform our every decision. Millions of sensors and devices are continuously producing data and exchanging important messages via complex networks supporting machine-to-machine communications and monitoring and controlling critical smart-world infrastructures. As a strategy to mitigate the escalation in resource congestion, edge computing has emerged as a new paradigm to solve IoT and localized computing needs. Compared with the well-known cloud computing, edge computing will migrate data computation or storage to the network “edge,” near the end users. Thus, a number of computation nodes distributed across the network can offload the computational stress away from the centralized data center, and can significantly reduce the latency in message exchange. In addition, the distributed structure can balance network traffic and avoid the traffic peaks in IoT networks, reducing the transmission latency between edge/cloudlet servers and end users, as well as reducing response times for real-time IoT applications in comparison with traditional cloud services. Furthermore, by transferring computation and communication overhead from nodes with limited battery supply to nodes with significant power resources, the system can extend the lifetime of the individual nodes. In this paper, we conduct a comprehensive survey, analyzing how edge computing improves the performance of IoT networks. We categorize edge computing into different groups based on architecture, and study their performance by comparing network latency, bandwidth occupation, energy consumption, and overhead. In addition, we consider security issues in edge computing, evaluating the availability, integrity, and the confidentiality of security strategies of each group, and propose a framework for security evaluation of IoT networks with edge computing. Finally, we compare the performance of various IoT applications (smart city, smart grid, smart transportation, and so on) in edge computing and traditional cloud computing architectures.

1,008 citations

Journal ArticleDOI
TL;DR: This article provides a comprehensive review on emerging and enabling technologies related to the 5G system that enables IoT, such as 5G new radio, multiple-input–multiple-output antenna with the beamformation technology, mm-wave commutation technology, heterogeneous networks (HetNets), the role of augmented reality (AR) in IoT, which are discussed in detail.
Abstract: Recently, wireless technologies have been growing actively all around the world. In the context of wireless technology, fifth-generation (5G) technology has become a most challenging and interesting topic in wireless research. This article provides an overview of the Internet of Things (IoT) in 5G wireless systems. IoT in the 5G system will be a game changer in the future generation. It will open a door for new wireless architecture and smart services. Recent cellular network LTE (4G) will not be sufficient and efficient to meet the demands of multiple device connectivity and high data rate, more bandwidth, low-latency quality of service (QoS), and low interference. To address these challenges, we consider 5G as the most promising technology. We provide a detailed overview of challenges and vision of various communication industries in 5G IoT systems. The different layers in 5G IoT systems are discussed in detail. This article provides a comprehensive review on emerging and enabling technologies related to the 5G system that enables IoT. We consider the technology drivers for 5G wireless technology, such as 5G new radio (NR), multiple-input–multiple-output antenna with the beamformation technology, mm-wave commutation technology, heterogeneous networks (HetNets), the role of augmented reality (AR) in IoT, which are discussed in detail. We also provide a review on low-power wide-area networks (LPWANs), security challenges, and its control measure in the 5G IoT scenario. This article introduces the role of AR in the 5G IoT scenario. This article also discusses the research gaps and future directions. The focus is also on application areas of IoT in 5G systems. We, therefore, outline some of the important research directions in 5G IoT.

896 citations

Journal ArticleDOI
TL;DR: A detailed review of the security-related challenges and sources of threat in the IoT applications is presented and four different technologies, blockchain, fog computing, edge computing, and machine learning, to increase the level of security in IoT are discussed.
Abstract: The Internet of Things (IoT) is the next era of communication. Using the IoT, physical objects can be empowered to create, receive, and exchange data in a seamless manner. Various IoT applications focus on automating different tasks and are trying to empower the inanimate physical objects to act without any human intervention. The existing and upcoming IoT applications are highly promising to increase the level of comfort, efficiency, and automation for the users. To be able to implement such a world in an ever-growing fashion requires high security, privacy, authentication, and recovery from attacks. In this regard, it is imperative to make the required changes in the architecture of the IoT applications for achieving end-to-end secure IoT environments. In this paper, a detailed review of the security-related challenges and sources of threat in the IoT applications is presented. After discussing the security issues, various emerging and existing technologies focused on achieving a high degree of trust in the IoT applications are discussed. Four different technologies, blockchain, fog computing, edge computing, and machine learning, to increase the level of security in IoT are discussed.

800 citations