scispace - formally typeset
Search or ask a question
Author

Hannah Dada

Bio: Hannah Dada is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Antigen & Cytotoxic T cell. The author has an hindex of 3, co-authored 4 publications receiving 2117 citations.
Topics: Antigen, Cytotoxic T cell, CD8, T cell, Immunotherapy

Papers
More filters
Journal ArticleDOI
16 Apr 2015-Nature
TL;DR: Major tumour regressions are reported in a subset of patients with metastatic melanoma treated with an anti-CTLA4 antibody and radiation and reproduced this effect in mouse models, showing that PD-L1 on melanoma cells allows tumours to escape anti- NCTLA4-based therapy, and the combination of radiation, anti- CTLA4 and anti-PD-L 1 promotes response and immunity through distinct mechanisms.
Abstract: Immune checkpoint inhibitors result in impressive clinical responses, but optimal results will require combination with each other and other therapies. This raises fundamental questions about mechanisms of non-redundancy and resistance. Here we report major tumour regressions in a subset of patients with metastatic melanoma treated with an anti-CTLA4 antibody (anti-CTLA4) and radiation, and reproduced this effect in mouse models. Although combined treatment improved responses in irradiated and unirradiated tumours, resistance was common. Unbiased analyses of mice revealed that resistance was due to upregulation of PD-L1 on melanoma cells and associated with T-cell exhaustion. Accordingly, optimal response in melanoma and other cancer types requires radiation, anti-CTLA4 and anti-PD-L1/PD-1. Anti-CTLA4 predominantly inhibits T-regulatory cells (Treg cells), thereby increasing the CD8 T-cell to Treg (CD8/Treg) ratio. Radiation enhances the diversity of the T-cell receptor (TCR) repertoire of intratumoral T cells. Together, anti-CTLA4 promotes expansion of T cells, while radiation shapes the TCR repertoire of the expanded peripheral clones. Addition of PD-L1 blockade reverses T-cell exhaustion to mitigate depression in the CD8/Treg ratio and further encourages oligoclonal T-cell expansion. Similarly to results from mice, patients on our clinical trial with melanoma showing high PD-L1 did not respond to radiation plus anti-CTLA4, demonstrated persistent T-cell exhaustion, and rapidly progressed. Thus, PD-L1 on melanoma cells allows tumours to escape anti-CTLA4-based therapy, and the combination of radiation, anti-CTLA4 and anti-PD-L1 promotes response and immunity through distinct mechanisms.

1,872 citations

Journal ArticleDOI
01 Dec 2016-Cell
TL;DR: It is demonstrated that prolonged interferon signaling orchestrates PDL1-dependent and PDL 1-independent resistance to immune checkpoint blockade (ICB) and to combinations such as radiation plus anti-CTLA4, and biomarkers for interferons-driven resistance associate with clinical progression after anti-PD1 therapy.

749 citations

Journal ArticleDOI
TL;DR: Radiotherapy and αCD40 disrupt key links between innate and adaptive immunity, ameliorating resistance to immune checkpoint blockade in pancreatic cancer via multiple cellular mechanisms.
Abstract: Immunotherapy in pancreatic ductal adenocarcinoma (PDA) remains a difficult clinical problem despite success in other disease types with immune checkpoint blockade (ICB) and chimeric antigen receptor T cell therapy. Mechanisms driving immunosuppression and poor T cell infiltration in PDA are incompletely understood. Here we use genetically engineered mouse models of PDA that recapitulate hallmarks of human disease to demonstrate that CD40 pathway activation is required for clinical response to radiotherapy (RT) and ICB with αCTLA-4 and αPD-1. The combination of an agonist αCD40 antibody, RT, and dual ICB eradicated irradiated and unirradiated (i.e. abscopal) tumors, generating long-term immunity. Response required T cells and also short-lived myeloid cells and was dependent on the long non-coding RNA myeloid regulator Morrbid. Using unbiased random forest machine learning, we built unique, contextual signatures for each therapeutic component, revealing that (i) RT triggers an early proinflammatory stimulus, ablating existing intratumoral T cells and upregulating MHC class I and CD86 on antigen presenting cells, (ii) αCD40 causes a systemic and intratumoral reorganization of the myeloid compartment, and (iii) ICB increases intratumoral T cell infiltration and improves the CD8 T cell:regulatory T cell ratio. Thus, αCD40 and RT non-redundantly augment anti-tumor immunity in PDA, which is otherwise refractory to ICB, providing a clear rationale for clinical evaluation.

83 citations

Posted ContentDOI
21 Jan 2022-bioRxiv
TL;DR: It is shown that transiently interrupting central tolerance through RANKL blockade unleashes T cells possessing TCRs with self-reactive features that enable ICB to reject poorly immunogenic tumors.
Abstract: Availability of effective anti-tumor T cells is limited by cancer immunoediting, which depletes neoantigens, and central tolerance, which eliminates developing T cells with high-affinity T cell receptors (TCRs) against tumor self-antigens. Remaining tumor-reactive T cells are often exhausted after immune checkpoint blockade (ICB). Whether endogenous T cells with high- affinity TCRs against tumor self-antigens can be generated to circumvent exhaustion and reject neoantigen-poor tumors is unclear. We show that transiently interrupting central tolerance through RANKL blockade unleashes T cells possessing TCRs with self-reactive features that enable ICB to reject poorly immunogenic tumors. Upon recognition of tumor self-antigens, these T cells exhibit enhanced TCR signaling, enrichment in NFAT/AP-1 genes, and lymph node priming. Consequently, memory-precursor T cells against tumor self-antigens are generated, avoid exhaustion, and become effector-memory cells with transcriptional features associated with clinical ICB response. Thus, interrupting central tolerance provides T cells with tumor- directed autoreactivity that avoid exhaustion and improve immunotherapy.

1 citations

Journal ArticleDOI
TL;DR: It is shown that TCR signal strength determines T cell differentiation and function in tumors and is related to tumorigenicity and apoptosis in mice.
Abstract: Shakiba et al. show that TCR signal strength determines T cell differentiation and function in tumors.

1 citations


Cited by
More filters
Journal ArticleDOI
09 Feb 2017-Cell
TL;DR: As the molecular mechanisms of resistance to immunotherapy are elucidated, actionable strategies to prevent or treat them may be derived to improve clinical outcomes for patients.

3,131 citations

Journal ArticleDOI
22 Feb 2018-Nature
TL;DR: Tumours from a large cohort of patients with metastatic urothelial cancer who were treated with an anti-PD-L1 agent were examined and major determinants of clinical outcome were identified and suggested that TGFβ shapes the tumour microenvironment to restrain anti-tumour immunity by restricting T-cell infiltration.
Abstract: Therapeutic antibodies that block the programmed death-1 (PD-1)-programmed death-ligand 1 (PD-L1) pathway can induce robust and durable responses in patients with various cancers, including metastatic urothelial cancer. However, these responses only occur in a subset of patients. Elucidating the determinants of response and resistance is key to improving outcomes and developing new treatment strategies. Here we examined tumours from a large cohort of patients with metastatic urothelial cancer who were treated with an anti-PD-L1 agent (atezolizumab) and identified major determinants of clinical outcome. Response to treatment was associated with CD8+ T-effector cell phenotype and, to an even greater extent, high neoantigen or tumour mutation burden. Lack of response was associated with a signature of transforming growth factor β (TGFβ) signalling in fibroblasts. This occurred particularly in patients with tumours, which showed exclusion of CD8+ T cells from the tumour parenchyma that were instead found in the fibroblast- and collagen-rich peritumoural stroma; a common phenotype among patients with metastatic urothelial cancer. Using a mouse model that recapitulates this immune-excluded phenotype, we found that therapeutic co-administration of TGFβ-blocking and anti-PD-L1 antibodies reduced TGFβ signalling in stromal cells, facilitated T-cell penetration into the centre of tumours, and provoked vigorous anti-tumour immunity and tumour regression. Integration of these three independent biological features provides the best basis for understanding patient outcome in this setting and suggests that TGFβ shapes the tumour microenvironment to restrain anti-tumour immunity by restricting T-cell infiltration.

2,808 citations

Journal ArticleDOI
TL;DR: An algorithm-selected gene signature focused on tumor immune evasion and suppression predicts response to immune checkpoint blockade in melanoma, exceeding the accuracy of current clinical biomarkers.
Abstract: Cancer treatment by immune checkpoint blockade (ICB) can bring long-lasting clinical benefits, but only a fraction of patients respond to treatment. To predict ICB response, we developed TIDE, a computational method to model two primary mechanisms of tumor immune evasion: the induction of T cell dysfunction in tumors with high infiltration of cytotoxic T lymphocytes (CTL) and the prevention of T cell infiltration in tumors with low CTL level. We identified signatures of T cell dysfunction from large tumor cohorts by testing how the expression of each gene in tumors interacts with the CTL infiltration level to influence patient survival. We also modeled factors that exclude T cell infiltration into tumors using expression signatures from immunosuppressive cells. Using this framework and pre-treatment RNA-Seq or NanoString tumor expression profiles, TIDE predicted the outcome of melanoma patients treated with first-line anti-PD1 or anti-CTLA4 more accurately than other biomarkers such as PD-L1 level and mutation load. TIDE also revealed new candidate ICB resistance regulators, such as SERPINB9, demonstrating utility for immunotherapy research.

2,185 citations

Journal ArticleDOI
TL;DR: This work discusses biomarkers for anti-PD1 therapy based on immunological, genetic and virological criteria and suggests mechanism-based insights from such studies may guide the design of synergistic treatment combinations based on immune checkpoint blockade.
Abstract: With recent approvals for multiple therapeutic antibodies that block cytotoxic T lymphocyte associated antigen 4 (CTLA4) and programmed cell death protein 1 (PD1) in melanoma, non-small-cell lung cancer and kidney cancer, and additional immune checkpoints being targeted clinically, many questions still remain regarding the optimal use of drugs that block these checkpoint pathways. Defining biomarkers that predict therapeutic effects and adverse events is a crucial mandate, highlighted by recent approvals for two PDL1 diagnostic tests. Here, we discuss biomarkers for anti-PD1 therapy based on immunological, genetic and virological criteria. The unique biology of the CTLA4 immune checkpoint, compared with PD1, requires a different approach to biomarker development. Mechanism-based insights from such studies may guide the design of synergistic treatment combinations based on immune checkpoint blockade.

1,901 citations

Journal ArticleDOI
TL;DR: The current state of understanding of T-cell costimulatory mechanisms and checkpoint blockade, primarily of CTLA4 and PD-1, is reviewed, and conceptual gaps in knowledge are highlighted.
Abstract: Immune checkpoint blockade is able to induce durable responses across multiple types of cancer, which has enabled the oncology community to begin to envision potentially curative therapeutic approaches. However, the remarkable responses to immunotherapies are currently limited to a minority of patients and indications, highlighting the need for more effective and novel approaches. Indeed, an extraordinary amount of preclinical and clinical investigation is exploring the therapeutic potential of negative and positive costimulatory molecules. Insights into the underlying biological mechanisms and functions of these molecules have, however, lagged significantly behind. Such understanding will be essential for the rational design of next-generation immunotherapies. Here, we review the current state of our understanding of T-cell costimulatory mechanisms and checkpoint blockade, primarily of CTLA4 and PD-1, and highlight conceptual gaps in knowledge. Significance: This review provides an overview of immune checkpoint blockade therapy from a basic biology and immunologic perspective for the cancer research community. Cancer Discov; 8(9); 1069–86. ©2018 AACR.

1,893 citations