scispace - formally typeset
Search or ask a question
Author

Hanno Huwer

Bio: Hanno Huwer is an academic researcher from Saarland University. The author has contributed to research in topics: Lung cancer & Lung. The author has an hindex of 30, co-authored 95 publications receiving 3115 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In a multicenter study, the expression profiles of 863 microRNAs were determined by array analysis of 454 blood samples from human individuals with different cancers or noncancer diseases, and this 'miRNome' was validated by quantitative real-time PCR.
Abstract: In a multicenter study, we determined the expression profiles of 863 microRNAs by array analysis of 454 blood samples from human individuals with different cancers or noncancer diseases, and validated this 'miRNome' by quantitative real-time PCR. We detected consistently deregulated profiles for all tested diseases; pathway analysis confirmed disease association of the respective microRNAs. We observed significant correlations (P = 0.004) between the genomic location of disease-associated genetic variants and deregulated microRNAs.

347 citations

Journal ArticleDOI
22 Feb 2013-ACS Nano
TL;DR: Investigation of uptake patterns of silica nanoparticle geometries in model cells helps aid in the identification of the role of geometry on cellular uptake and transport, and suggests that these uptake patterns initialize different downstream cellular pathways, dependent on cell type and phenotype.
Abstract: In order to engineer safer nanomaterials, there is a need to understand, systematically evaluate, and develop constructs with appropriate cellular uptake and intracellular fates. The overall goal of this project is to determine the uptake patterns of silica nanoparticle geometries in model cells, in order to aid in the identification of the role of geometry on cellular uptake and transport. In our experiments we observed a significant difference in the viability of two phenotypes of primary macrophages; immortalized macrophages exhibited similar patterns. However, both primary and immortalized epithelial cells did not exhibit toxicity profiles. Interestingly uptake of these geometries in all cell lines exhibited very different time-dependent patterns. A screening of a series of chemical inhibitors of endocytosis was performed to isolate the uptake mechanisms of the different particles. The results show that all geometries exhibit very different uptake profiles and that this may be due to the orientation o...

284 citations

Journal ArticleDOI
TL;DR: The findings support the idea that neoplasia may lead to a deregulation of miRNA expression in blood cells of cancer patients compared toBlood cells of healthy individuals and provide evidence that miRNA patterns can be used to detect human cancers from blood cells.
Abstract: Deregulated miRNAs are found in cancer cells and recently in blood cells of cancer patients. Due to their inherent stability miRNAs may offer themselves for blood based tumor diagnosis. Here we addressed the question whether there is a sufficient number of miRNAs deregulated in blood cells of cancer patients to be able to distinguish between cancer patients and controls. We synthesized 866 human miRNAs and miRNA star sequences as annotated in the Sanger miRBase onto a microarray designed by febit biomed gmbh. Using the fully automated Geniom Real Time Analyzer platform, we analyzed the miRNA expression in 17 blood cell samples of patients with non-small cell lung carcinomas (NSCLC) and in 19 blood samples of healthy controls. Using t-test, we detected 27 miRNAs significantly deregulated in blood cells of lung cancer patients as compared to the controls. Some of these miRNAs were validated using qRT-PCR. To estimate the value of each deregulated miRNA, we grouped all miRNAs according to their diagnostic information that was measured by Mutual Information. Using a subset of 24 miRNAs, a radial basis function Support Vector Machine allowed for discriminating between blood cellsamples of tumor patients and controls with an accuracy of 95.4% [94.9%-95.9%], a specificity of 98.1% [97.3%-98.8%], and a sensitivity of 92.5% [91.8%-92.5%]. Our findings support the idea that neoplasia may lead to a deregulation of miRNA expression in blood cells of cancer patients compared to blood cells of healthy individuals. Furthermore, we provide evidence that miRNA patterns can be used to detect human cancers from blood cells.

180 citations

Journal ArticleDOI
TL;DR: Tf-conjugated liposomes appear as good candidates for an approach to deliver cytostatic drugs to sites of lung cancer by inhalation and correlated well with enhanced uptake of Tf-liposomes and increased levels of cytotoxicity.

127 citations

Journal ArticleDOI
05 Feb 2021
TL;DR: In this article, a lung-on-a-chip based on a biological, stretchable and biodegradable membrane made of collagen and elastin is presented to emulate an array of tiny alveoli with in vivo-like dimensions.
Abstract: The air-blood barrier with its complex architecture and dynamic environment is difficult to mimic in vitro Lung-on-a-chips enable mimicking the breathing movements using a thin, stretchable PDMS membrane However, they fail to reproduce the characteristic alveoli network as well as the biochemical and physical properties of the alveolar basal membrane Here, we present a lung-on-a-chip, based on a biological, stretchable and biodegradable membrane made of collagen and elastin, that emulates an array of tiny alveoli with in vivo-like dimensions This membrane outperforms PDMS in many ways: it does not absorb rhodamine-B, is biodegradable, is created by a simple method, and can easily be tuned to modify its thickness, composition and stiffness The air-blood barrier is reconstituted using primary lung alveolar epithelial cells from patients and primary lung endothelial cells Typical alveolar epithelial cell markers are expressed, while the barrier properties are preserved for up to 3 weeks

126 citations


Cited by
More filters
01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
01 Jun 2008-Chest
TL;DR: This article discusses the prevention of venous thromboembolism (VTE) and is part of the Antithrombotic and Thrombolytic Therapy: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition).

3,944 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide evidence-based recommendations to manage Otitis Media with effusion (OME), defined as the presence of fluid in the middle ear without signs or symptoms of acute ear infection.
Abstract: ObjectiveThis update of a 2004 guideline codeveloped by the American Academy of Otolaryngology—Head and Neck Surgery Foundation, the American Academy of Pediatrics, and the American Academy of Family Physicians, provides evidence-based recommendations to manage otitis media with effusion (OME), defined as the presence of fluid in the middle ear without signs or symptoms of acute ear infection. Changes from the prior guideline include consumer advocates added to the update group, evidence from 4 new clinical practice guidelines, 20 new systematic reviews, and 49 randomized control trials, enhanced emphasis on patient education and shared decision making, a new algorithm to clarify action statement relationships, and new and expanded recommendations for the diagnosis and management of OME.PurposeThe purpose of this multidisciplinary guideline is to identify quality improvement opportunities in managing OME and to create explicit and actionable recommendations to implement these opportunities in clinical pra...

1,744 citations

Journal ArticleDOI
TL;DR: It is anticipated that precisely engineered nanoparticles will emerge as the next-generation platform for cancer therapy and many other biomedical applications.
Abstract: In medicine, nanotechnology has sparked a rapidly growing interest as it promises to solve a number of issues associated with conventional therapeutic agents, including their poor water solubility (at least, for most anticancer drugs), lack of targeting capability, nonspecific distribution, systemic toxicity, and low therapeutic index. Over the past several decades, remarkable progress has been made in the development and application of engineered nanoparticles to treat cancer more effectively. For example, therapeutic agents have been integrated with nanoparticles engineered with optimal sizes, shapes, and surface properties to increase their solubility, prolong their circulation half-life, improve their biodistribution, and reduce their immunogenicity. Nanoparticles and their payloads have also been favorably delivered into tumors by taking advantage of the pathophysiological conditions, such as the enhanced permeability and retention effect, and the spatial variations in the pH value. Additionally, targeting ligands (e.g., small organic molecules, peptides, antibodies, and nucleic acids) have been added to the surface of nanoparticles to specifically target cancerous cells through selective binding to the receptors overexpressed on their surface. Furthermore, it has been demonstrated that multiple types of therapeutic drugs and/or diagnostic agents (e.g., contrast agents) could be delivered through the same carrier to enable combination therapy with a potential to overcome multidrug resistance, and real-time readout on the treatment efficacy. It is anticipated that precisely engineered nanoparticles will emerge as the next-generation platform for cancer therapy and many other biomedical applications.

1,603 citations

Journal ArticleDOI
01 Feb 2012-Chest
TL;DR: In this article, the authors developed recommendations for thromboprophylaxis in nonorthopedic surgical patients by using systematic methods as described in Methodology for the Development of Antithrombotic Therapy and Prevention of Thrombosis Guidelines.

1,600 citations